KLASIFIKASI AKUN BUZZER PADA TWITTER MENGGUNAKAN ALGORITMA NAIVE BAYES

Authors

  • Catur Arpal Perkasa Universitas Pembangunan Nasional “Veteran” Jawa Timur
  • Amalia Andjani Arifiyanti Universitas Pembangunan Nasional “Veteran” Jawa Timur
  • Agus Salim Universitas Pembangunan Nasional “Veteran” Jawa Timur

DOI:

https://doi.org/10.55606/juitik.v3i1.363

Keywords:

Buzzer, Gaussian Naïve Bayes, Klasifikasi, Twitter

Abstract

Dalam kampanye IPO perusahaan e-commerce di Indonesia yang trending pada Twitter terdapat dugaan keterlibatan buzzer dalam penyebaran konten yang terfabrikasi. Dalam penelitian ini, akan dikaji pola dari akun-akun yang terlibat dalam penyebarluasan. Penelitian ini akan mengembangkan sebuah pengklasifikasi buzzer berdasarkan pola dan karakteristik yang didapatkan dari akun-akun tersebut. Pengklasifikasi buzzer akan memiliki empat atribut: jumlah following, jumlah follower, nilai sentimen dari tweets terbaru, dan usia akun. Data akan diproses dan dibersihkan sebelum melakukan analisis sentimen untuk memberikan bobot pada data. Kemudian data dilabeli sesuai dengan karakteristik yang telah ditentukan. Algoritma Naive Bayes varian Gaussian akan digunakan untuk melakukan klasifikasi akun buzzer dan non-buzzer. Hasil dari penelitian ini menunjukkan performa model klasifikasi akun buzzer yang memiliki nilai akurasi sebesar 80%.

References

Alasmari, S. F., & Dahab, M. (2017). Sentiment Detection, Recognition, and Aspect Identification. International Journal of Computer Applications, 177(2), 31- 38. http://dx.doi.org/10.5120/ijca2017915675

Aqlan, A. A. Q., Manjula, B., & Naik, R. L. (2019). A Study of Sentiment Analysis: Concepts, Techniques, and Challenges. Proceedings of International Conference on Computational Intelligence and Data Engineering, 147-162.

https://doi.org/10.1007/978-981-13-6459-4_16

Dal Pozzolo, A., Caelen, O., Johnson, R. A., & Bontempi, G. (2015). Calibrating probability with undersampling for unbalanced classification. IEEE Symposium Series on Computational Intelligence, 159-167.

https://doi.org/10.1109/SSCI.2015.33

Etaiwi, W., & Naymat, G. (2017). The Impact of applying Different Preprocessing Steps on Review Spam Detection. The 8th International Conference on Emerging Ubiquitous Systems and Pervasive Networks, 274-279.

http://dx.doi.org/10.1016/j.procs.2017.08.368

Handini, V. A., & Dunan, A. (2019). Buzzer as the Driving Force for Buzz Marketing on Twitter in the 2019 Indonesian Presidential Election. International Journal Of Science, Technology & Management, 479-491.

https://doi.org/10.46729/ijstm.v2i2.172

Ismail, M., Hassan, N., & Bafjaish, S. S. (2020). Comparative Analysis of Naive Bayesian Techniques in Health-Related for Classification Task. Journal of Soft Computing and Data Mining, 1(2), 1-10.

http://dx.doi.org/10.30880/jscdm.2020.01.02.001

Juzar, M. T., & Akbar, S. (2018). Buzzer Detection on Twitter Using Modified Eigenvector Centrality. International Conference on Data and Software Engineering, 1-5.

https://doi.org/10.1109/ICODSE.2018.8705788

Leung, C. K., Chen, Y., Hoi, C. S. H., Shang, S., & Cuzzocrea, A. (2020). Machine Learning and OLAP on Big COVID-19 Data. International Conference on Big Data (Big Data), 5118-5127.

https://doi.org/10.1109/BigData50022.2020.9378407

Luo, H., Huang, W., Chen, C., Kangqiang, X., & Fan, Y. (2018). An Empirical Study on the Impact of Negative Online Word-of-mouth on Consumer’s Purchase Intention. International Conference on Service Systems and Service Management, 1-6.

https://doi.org/10.1109/ICSSSM.2018.8465093

Manjari, K. U., Rousha S., Sumanth D., & Devi J. S. (2020). Extractive Text Summarization from Web pages using Selenium and TF-IDF algorithm. International Conference on Trends in Electronics and Informatics, 648- 652.

https://doi.org/10.1109/ICOEI48184.2020.9142938

Maulana, A., & Kuswayati, Sri. (2021). Klasifikasi Akun Buzzer Pemilu Pada Media Sosial Twitter Berdasarkan Data Tweet Menggunakan Algoritma C4.5. Jurnal Ilmiah Nasional Riset Aplikasi dan Teknik Informatika, 3(2), 30-35.

https://doi.org/10.53580/naratif.v3i02.132

Nongthombam, K., & Sharma, D. (2021). Data Analysis using Python. International Journal of Engineering Rresearch & Technology, 10(7), 463- 468.

https://doi.org/10.17577/IJERTV10IS070241

Ping, H., & Qin, S. (2018). A Social Bots Detection Model Based on Deep Learning Algorithm. International Conference on Communication Technology, 1435- 1439.

https://doi.org/10.1109/ICCT.2018.8600029

Rahat, A. M., Kahir, A., & Masum, A. K. M. (2019). Comparison of Naive Bayes and SVM Algorithm based on Sentiment Analysis Using Review Dataset. International Conference on System Modeling & Advancement in Research Trends, 266-270.

http://dx.doi.org/10.1109/SMART46866.2019.9117512

Ramadhani, R. A., Indriani, F., & Nugrahadi, D. T. (2016). Comparison of Naive Bayes Smoothing Methods for Twitter Sentiment Analysis. International Conference on Advanced Computer Science and Information Systems, 287- 292.

https://doi.org/10.1109/ICACSIS.2016.7872720

Stancin, I., & Jovic, A. (2019). An overview and comparison of free Python libraries for data mining and big data analysis. International Convention on Information and Communication Technology, Electronics and Microelectronics, 977-982.

Suciati, S., Wibisono, A., & Mursanto, P. (2019). Twitter Buzzer Detection for Indonesian Presidential Election. International Conference on Informatics and Computational Sciences, 1-5.

https://doi.org/10.1109/ICICoS48119.2019.8982529

Artikel Prosiding

Devika, R., Avilala, S. V., & Subramaniyaswamy, V. (2019). Comparative Study of Classifier for Chronic Kidney Disease prediction using Naive Bayes, KNN and Random Forest. Proceedings of the Third International Conference on Computing Methodologies and Communication, 679-684. https://doi.org/10.1109/ICCMC.2019.8819654

Hutto, C. J., & Gilbert, E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of SocialMediaText. Proceedings of the Eighth International AAAI Conference on Weblogs and SocialMedia, 216-225. https://doi.org/10.1609/icwsm.v8i1.14550

Buku Teks

Chai, C. P. (2020). The importance of data cleaning: Three visualization examples.

CHANCE, 33(1), 4-9

Verspoor, K., & Cohen, K. B. (2013). Natural Language Processing. Encyclopedia of Systems Biology, 1495–149

Sumber dari internet dengan nama penulis

Beri, A. (2020). SENTIMENTAL ANALYSIS USING VADER. Available at: https://towardsdatascience.com/sentimental-analysisusing-vader-a3415fef7664, diakses tanggal 10 November 2022

Gupta, S. (2018). Sentiment Analysis: Concept, Analysis and Applications. Available at: https://towardsdatascience.com/sentimentanalysis-concept-analysis-and-applications-6c94d6f58c17, Diakses tanggal 05 November 2022.

Downloads

Published

2023-01-25

How to Cite

Catur Arpal Perkasa, Amalia Andjani Arifiyanti, & Agus Salim. (2023). KLASIFIKASI AKUN BUZZER PADA TWITTER MENGGUNAKAN ALGORITMA NAIVE BAYES. Jurnal Ilmiah Teknik Informatika Dan Komunikasi, 3(1), 01–12. https://doi.org/10.55606/juitik.v3i1.363

Similar Articles

You may also start an advanced similarity search for this article.