KLASIFIKASI AKUN BUZZER PADA TWITTER MENGGUNAKAN ALGORITMA NAIVE BAYES
DOI:
https://doi.org/10.55606/juitik.v3i1.363Keywords:
Buzzer, Gaussian Naïve Bayes, Klasifikasi, TwitterAbstract
Dalam kampanye IPO perusahaan e-commerce di Indonesia yang trending pada Twitter terdapat dugaan keterlibatan buzzer dalam penyebaran konten yang terfabrikasi. Dalam penelitian ini, akan dikaji pola dari akun-akun yang terlibat dalam penyebarluasan. Penelitian ini akan mengembangkan sebuah pengklasifikasi buzzer berdasarkan pola dan karakteristik yang didapatkan dari akun-akun tersebut. Pengklasifikasi buzzer akan memiliki empat atribut: jumlah following, jumlah follower, nilai sentimen dari tweets terbaru, dan usia akun. Data akan diproses dan dibersihkan sebelum melakukan analisis sentimen untuk memberikan bobot pada data. Kemudian data dilabeli sesuai dengan karakteristik yang telah ditentukan. Algoritma Naive Bayes varian Gaussian akan digunakan untuk melakukan klasifikasi akun buzzer dan non-buzzer. Hasil dari penelitian ini menunjukkan performa model klasifikasi akun buzzer yang memiliki nilai akurasi sebesar 80%.
References
Alasmari, S. F., & Dahab, M. (2017). Sentiment Detection, Recognition, and Aspect Identification. International Journal of Computer Applications, 177(2), 31- 38. http://dx.doi.org/10.5120/ijca2017915675
Aqlan, A. A. Q., Manjula, B., & Naik, R. L. (2019). A Study of Sentiment Analysis: Concepts, Techniques, and Challenges. Proceedings of International Conference on Computational Intelligence and Data Engineering, 147-162.
https://doi.org/10.1007/978-981-13-6459-4_16
Dal Pozzolo, A., Caelen, O., Johnson, R. A., & Bontempi, G. (2015). Calibrating probability with undersampling for unbalanced classification. IEEE Symposium Series on Computational Intelligence, 159-167.
https://doi.org/10.1109/SSCI.2015.33
Etaiwi, W., & Naymat, G. (2017). The Impact of applying Different Preprocessing Steps on Review Spam Detection. The 8th International Conference on Emerging Ubiquitous Systems and Pervasive Networks, 274-279.
http://dx.doi.org/10.1016/j.procs.2017.08.368
Handini, V. A., & Dunan, A. (2019). Buzzer as the Driving Force for Buzz Marketing on Twitter in the 2019 Indonesian Presidential Election. International Journal Of Science, Technology & Management, 479-491.
https://doi.org/10.46729/ijstm.v2i2.172
Ismail, M., Hassan, N., & Bafjaish, S. S. (2020). Comparative Analysis of Naive Bayesian Techniques in Health-Related for Classification Task. Journal of Soft Computing and Data Mining, 1(2), 1-10.
http://dx.doi.org/10.30880/jscdm.2020.01.02.001
Juzar, M. T., & Akbar, S. (2018). Buzzer Detection on Twitter Using Modified Eigenvector Centrality. International Conference on Data and Software Engineering, 1-5.
https://doi.org/10.1109/ICODSE.2018.8705788
Leung, C. K., Chen, Y., Hoi, C. S. H., Shang, S., & Cuzzocrea, A. (2020). Machine Learning and OLAP on Big COVID-19 Data. International Conference on Big Data (Big Data), 5118-5127.
https://doi.org/10.1109/BigData50022.2020.9378407
Luo, H., Huang, W., Chen, C., Kangqiang, X., & Fan, Y. (2018). An Empirical Study on the Impact of Negative Online Word-of-mouth on Consumer’s Purchase Intention. International Conference on Service Systems and Service Management, 1-6.
https://doi.org/10.1109/ICSSSM.2018.8465093
Manjari, K. U., Rousha S., Sumanth D., & Devi J. S. (2020). Extractive Text Summarization from Web pages using Selenium and TF-IDF algorithm. International Conference on Trends in Electronics and Informatics, 648- 652.
https://doi.org/10.1109/ICOEI48184.2020.9142938
Maulana, A., & Kuswayati, Sri. (2021). Klasifikasi Akun Buzzer Pemilu Pada Media Sosial Twitter Berdasarkan Data Tweet Menggunakan Algoritma C4.5. Jurnal Ilmiah Nasional Riset Aplikasi dan Teknik Informatika, 3(2), 30-35.
https://doi.org/10.53580/naratif.v3i02.132
Nongthombam, K., & Sharma, D. (2021). Data Analysis using Python. International Journal of Engineering Rresearch & Technology, 10(7), 463- 468.
https://doi.org/10.17577/IJERTV10IS070241
Ping, H., & Qin, S. (2018). A Social Bots Detection Model Based on Deep Learning Algorithm. International Conference on Communication Technology, 1435- 1439.
https://doi.org/10.1109/ICCT.2018.8600029
Rahat, A. M., Kahir, A., & Masum, A. K. M. (2019). Comparison of Naive Bayes and SVM Algorithm based on Sentiment Analysis Using Review Dataset. International Conference on System Modeling & Advancement in Research Trends, 266-270.
http://dx.doi.org/10.1109/SMART46866.2019.9117512
Ramadhani, R. A., Indriani, F., & Nugrahadi, D. T. (2016). Comparison of Naive Bayes Smoothing Methods for Twitter Sentiment Analysis. International Conference on Advanced Computer Science and Information Systems, 287- 292.
https://doi.org/10.1109/ICACSIS.2016.7872720
Stancin, I., & Jovic, A. (2019). An overview and comparison of free Python libraries for data mining and big data analysis. International Convention on Information and Communication Technology, Electronics and Microelectronics, 977-982.
Suciati, S., Wibisono, A., & Mursanto, P. (2019). Twitter Buzzer Detection for Indonesian Presidential Election. International Conference on Informatics and Computational Sciences, 1-5.
https://doi.org/10.1109/ICICoS48119.2019.8982529
Artikel Prosiding
Devika, R., Avilala, S. V., & Subramaniyaswamy, V. (2019). Comparative Study of Classifier for Chronic Kidney Disease prediction using Naive Bayes, KNN and Random Forest. Proceedings of the Third International Conference on Computing Methodologies and Communication, 679-684. https://doi.org/10.1109/ICCMC.2019.8819654
Hutto, C. J., & Gilbert, E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of SocialMediaText. Proceedings of the Eighth International AAAI Conference on Weblogs and SocialMedia, 216-225. https://doi.org/10.1609/icwsm.v8i1.14550
Buku Teks
Chai, C. P. (2020). The importance of data cleaning: Three visualization examples.
CHANCE, 33(1), 4-9
Verspoor, K., & Cohen, K. B. (2013). Natural Language Processing. Encyclopedia of Systems Biology, 1495–149
Sumber dari internet dengan nama penulis
Beri, A. (2020). SENTIMENTAL ANALYSIS USING VADER. Available at: https://towardsdatascience.com/sentimental-analysisusing-vader-a3415fef7664, diakses tanggal 10 November 2022
Gupta, S. (2018). Sentiment Analysis: Concept, Analysis and Applications. Available at: https://towardsdatascience.com/sentimentanalysis-concept-analysis-and-applications-6c94d6f58c17, Diakses tanggal 05 November 2022.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Jurnal Ilmiah Teknik Informatika dan Komunikasi
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.