Penerapan Learning Vector Quantization (LVQ) Untuk Klasifikasi Data Citra Digital
DOI:
https://doi.org/10.55606/juitik.v6i1.2072Keywords:
Artificial Neural Network, Digital Image, Feature Extraction, Image Classification, Learning Vector QuantizationAbstract
The rapid development of information technology has increased the utilization of digital images in various fields, creating a need for classification methods that are accurate and efficient. One method that can be applied to classify numerical data obtained from image feature extraction is Learning Vector Quantization (LVQ). This study aims to implement the LVQ method for digital image classification based on numerical features and to evaluate its performance in terms of accuracy. The data used in this study consist of grayscale digital images that have undergone a feature extraction process and are represented as numerical vectors. The dataset is divided into two classes, namely Class A and Class B. The research stages include data collection, grayscale conversion, feature extraction, LVQ training, and classification testing. The classification results are evaluated using a confusion matrix and accuracy measurement. The experimental results show that the LVQ method successfully classified all test data correctly, achieving an accuracy rate of 100%. These results indicate that Learning Vector Quantization is an effective method with good performance for classifying digital image data based on numerical features.
References
Ardi, K., Haq, A., Mercu, U., & Yogyakarta, B. (n.d.). Hybrid matrik co-occurrence dan learning vector quantization (LVQ). 13(3).
Fredy, R., Pasaribu, H., Zarlis, M., & Nababan, E. B. (2025). Performance level analysis on learning vector quantization and Kohonen algorithms. 9(1), 267–282.
Hariono, L. N., Astuti, S. D., Purwanti, E., & Si, M. (2022). Identification of stroke with MRI images using the learning vector quantization (LVQ) method based on texture features. 3(2), 62–69.
Khairullah, I. K., Yusa, A., & Universitas Amikom Yogyakarta. (2020). Deteksi citra digital menggunakan algoritma convolutional neural network (CNN). 2(2).
Kholilurrahman, M., Syafei, W. A., & Nurhayati, O. D. (2023). Image processing classification of rice leaf color images using the convolutional neural network method. 23(2), 175–186.
Malau, M. L., Wulandari, S., & Kiswanto, D. (2025). Penerapan pengolahan citra digital. Program Studi Ilmu Komputer, Medan.
Ningsih, L., Buono, A., & Haryanto, T. (2026). Fuzzy learning vector quantization for classification of mixed meat image based on color and texture characteristics. Jurnal RESTI, 5, 421–429.
Ratri, K., & Wardani, R. (1858). Penerapan metode learning vector quantization untuk mendiagnosa penyakit gangguan lambung. 13(2), 135–140.
Sah, A., Alexander, A. D., & Tanniewa, A. M. (2025). Pengembangan model klasifikasi citra penyakit daun lada menggunakan jaringan saraf tiruan learning vector quantization (LVQ). 4, 34–44.
Sahria, Y., Pasa, I. Y., & Sudira, P. (2025). Implementation of machine learning algorithm in axis photo image compression: Yogyakarta philosophy. 5(January), 75–83.
Sanjaya, S. (2018). Learning vector quantization 3 (LVQ3) and spatial fuzzy C-means (SFCM) for beef and pork image classification. 1(2), 60–65.
Sugiyono. (2020). Metodologi penelitian kuantitatif, kualitatif, dan R&D. Alfabeta.
Ummah, K. R., Priyawati, D., & Badriyah, J. (2025). Optimasi kontras dan ketajaman citra pada pengenalan makanan Indonesia berbasis machine learning. 27(2), 132–141.
Wicaksana, C. A., & Tyas, D. E. (2021). Jurnal Ilmiah Setrum. 10(2), 24–29. https://doi.org/10.36055/setrum.v10i2.13054
Wijaya, H. B., Samudra, Y., & Universitas Pamulang. (2025). Sistem deteksi dan klasifikasi bunga melati berbasis convolutional neural network (CNN). 4(3), 50–65.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Jurnal Ilmiah Teknik Informatika dan Komunikasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.















