Analisis Sentimen Pengunjung terhadap Tempat Wisata di Yogyakarta Menggunakan Support Vector Machine (SVM) dan Linear Discriminant Analysis (LDA)

Authors

  • Yuliana Putri Universitas Aisyiyah Yogyakarta
  • Esi Putri Silmina Universitas Aisyiyah Yogyakarta

DOI:

https://doi.org/10.55606/juitik.v6i1.2062

Keywords:

Linear-Discriminant Analysis, Sentiment Analysis, Support Vector Machine, Tourism, TripAdvisor

Abstract

Tourism is a strategic sector that plays an important role in supporting regional economic development, including in the Special Region of Yogyakarta as one of Indonesia’s leading tourist destinations. High tourism activity has led to an increasing number of visitor reviews on online platforms such as TripAdvisor, which can be utilized to understand tourists’ perceptions and satisfaction levels. The large volume of reviews makes manual analysis ineffective, thus requiring an automated, computation-based approach. This study aims to analyze the sentiment of tourism reviews in Yogyakarta City using the Support Vector Machine (SVM) algorithm with the addition of the Linear Discriminant Analysis (LDA) dimensionality reduction method. The dataset consists of 5,000 tourism reviews that have undergone preprocessing stages, including data cleaning, case folding, tokenization, normalization, stopword removal, and stemming. Text feature representation was performed using the TF-IDF method. Model evaluation was conducted using an 80:20 split between training and testing data, with performance measured using accuracy, precision, recall, and F1-score metrics. The results indicate that the application of LDA to the SVM model improves the balance of classification performance, particularly in precision (77.71%) and F1-score (79.5%), despite a slight decrease in accuracy. Sentiment classification results are dominated by positive sentiment (92.4%), reflecting generally favorable tourist perceptions of destinations in Yogyakarta. This study is expected to serve as a reference for tourism managers in evaluating service quality and facilities based on visitor opinions.

References

Ain, Q., Utami, E., & Nasiri, A. (2024). Analisis sentimen: Prediksi. Jurnal Ilmiah, 9(3), 1586–1595.

Almaspoor, M. H., Safaei, A., Salajegheh, A., & Minaei-Bidgoli, B. (2021). Support vector machines in big data classification: A systematic literature review. ResearchSquare, 1–34.

Aryanto, P. M., & Mardhiyyah, R. (2024). Analisis sentimen terhadap review Google Maps Jogja City Mall menggunakan algoritma support vector machine. Journal of Computer System and Informatics (JoSYC), 6(1), 25–35. https://doi.org/10.47065/josyc.v6i1.6045

Chetna, K. (2025). Sentiment analysis using SVM classifier in data mining: A machine learning approach. International Journal of Computer Science & Information Technology, 1(1), 29–33.

Diandra, D. (2022). Analisis sentimen ulasan MyXL dengan support vector machine [Skripsi/tesis tidak dipublikasikan].

Guido, R., Ferrisi, S., Lofaro, D., & Conforti, D. (2024). An overview on the advancements of support vector machine models in healthcare applications: A review. Information, 15(4). https://doi.org/10.3390/info15040235

Hanafi, M., Ridwan, M., & Nooriansyah, S. (2025). Analisis sentimen pengunjung terhadap objek wisata Kabupaten Gresik menggunakan support vector machine (SVM) dan linear discriminant analysis (LDA). Jurnal Ilmu Komputer dan Desain Komunikasi Visual, 10(1), 91–107.

Ipmawati, J., Saifulloh, S., & Kusnawi, K. (2024). Analisis sentimen tempat wisata berdasarkan ulasan pada Google Maps menggunakan algoritma support vector machine. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(1), 247–256.

Larasati, L. L. (2024). Analisis sentimen tentang wisata di Yogyakarta pada platform Instagram menggunakan naïve Bayes classifier [Skripsi/tesis tidak dipublikasikan].

Lestari, V. B., & Hutagalung, C. A. (2025). Evaluation of TF-IDF extraction techniques in sentiment analysis of Indonesian-language marketplaces using SVM, logistic regression, and naïve Bayes. J-KOMA: Journal of Computer Science and Applications. https://doi.org/10.21009/j-

Syahlan, M. S., Irmayanti, D., & Alam, S. (2023). Analisis sentimen terhadap tempat wisata dari komentar pengunjung dengan menggunakan metode support vector machine. Simtek: Jurnal Sistem Informasi dan Teknik Komputer, 8(2), 315–319. https://doi.org/10.51876/simtek.v8i2.281

Tri Putra, K., Hariyadi, M. A., & Crysdian, C. (2021). Perbandingan feature extraction TF-IDF dan bag of words untuk analisis sentimen berbasis SVM. Jurnal Cahaya Mandalika, 1449–1463.

Wahyudi, T., Rudiman, & Verdikha, N. A. (2024). Klasifikasi sentimen X (Twitter) perihal pemindahan ibu kota Indonesia menggunakan ekstraksi fitur TF-IDF dan metode support vector machine (SVM). JTI: Jurnal Teknologi Informasi, 18(2), 185–199.

Winarnie, W., Kusrini, K., & Hartanto, A. D. (2023). Pengurangan dimensi dengan metode linear discriminant analysis (LDA). Infotek: Jurnal Informatika dan Teknologi, 6(2), 228–237. https://doi.org/10.29408/jit.v6i2.10069

Zhahrina, A., Sofiah, U., Wahyu, D., Andayani, A., Khairurrabbani, C., & Saputri, F. (2025). Penerapan metode support vector machine (SVM) dalam analisis sentimen ulasan aplikasi Tokopedia di Google Play Store. Prosiding/Jurnal Ilmiah, 84–91.

Zulfikar, A. F. (2017). Pengembangan algoritma stemming bahasa Indonesia dengan pendekatan dictionary-based stemming untuk menentukan kata dasar dari kata yang berimbuhan. Jurnal Informatika Universitas Pamulang, 2(3), 143. https://doi.org/10.32493/informatika.v2i3.1443

Downloads

Published

2026-01-29

How to Cite

Yuliana Putri, & Esi Putri Silmina. (2026). Analisis Sentimen Pengunjung terhadap Tempat Wisata di Yogyakarta Menggunakan Support Vector Machine (SVM) dan Linear Discriminant Analysis (LDA). Jurnal Ilmiah Teknik Informatika Dan Komunikasi, 6(1), 361–378. https://doi.org/10.55606/juitik.v6i1.2062

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.