Identifikasi Topik Populer Fandom Alien Stage pada Round 6 Berdasarkan Komentar Youtube Menggunakan Text Mining

Authors

  • Aviliani Putri Institut Sosial dan Teknologi Widuri
  • Rouli Doharma Institut Sosial dan Teknologi Widuri

DOI:

https://doi.org/10.55606/juitik.v6i1.2019

Keywords:

Alien Stage, Fandom, Ivan, Text Mining, YouTube

Abstract

The importance of knowing how fandoms respond to something they are interested in, whether it's K-Pop, Anime, or Movies. One of the popular fandoms right now is the Alien Stage fandom, a work of animation created by VIVINOS. This aims to understand popular topics widely discussed among the fandom, especially on applications like YouTube comment sections, which serve as a place for fandom interaction to foster close relationships with each other. However, due to the large volume and number of comments in the comment section, this sometimes presents a challenge for identification. Therefore, using text mining can be a solution to find out popular topics among fandoms, which involves collecting comment data using data crawling, cleaning it during the data preprocessing stage, and extracting keywords using TF-IDF to produce the top 10 keywords. The results show that the characters of Ivan and Till became very popular and widely discussed topics, demonstrating how fans felt emotional connections to the characters and storylines in ROUND 6.

References

Adzina, N. J., Malihah, E., & Sartika, R. (2024). Analisis teori konflik Lewis A. Coser dalam fenomena fanwar fandom K-Pop (studi kasus fandom CARAT). Sosietas, 14(2), 183–198. https://doi.org/10.17509/sosietas.v14i2.73418

Amanda, N. A. J. (2022). Analisis fenomena fandom K-Pop dalam kajian hubungan parasosial: Literature review. Deleted Journal, 5(2). https://doi.org/10.36761/jp.v5i2.2113

Anggraini, N., Harahap, E. S. N., & Kurniawan, T. B. (2021). Text mining: Analisis teks terkait isu vaksinasi COVID-19. Jurnal IPTEKKOM: Jurnal Ilmu Pengetahuan & Teknologi Informasi, 23(2), 141–153. https://doi.org/10.17933/iptekkom.23.2.2021.141-153

Berezina, K., Bilgihan, A., Cobanoglu, C., & Okumus, F. (2015). Understanding satisfied and dissatisfied hotel customers: Text mining of online hotel reviews. Journal of Hospitality Marketing & Management, 25(1), 1–24. https://doi.org/10.1080/19368623.2015.983631

Bukhari, S., & Ramzan, M. (2024). Text mining on social media data: A systematic literature review. International Journal of Data Analysis Techniques and Strategies, 16(1), 82–104. https://doi.org/10.1504/IJDATS.2024.137480

Claussen, J., & Peukert, C. (2019). Obtaining data from the internet: A guide to data crawling in management research. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3403799

Deolika, A., Kusrini, K., & Luthfi, E. T. (2019). Analisis pembobotan kata pada klasifikasi text mining. Jurnal Teknologi Informasi, 3(2), 179–186. https://doi.org/10.36294/jurti.v3i2.1077

Fadillah, R. (2021). Penerapan text mining terhadap Badan Penyelenggara Jaminan Sosial Kesehatan untuk klasifikasi sentiment analysis [Undergraduate thesis, Universitas Islam Negeri Sultan Syarif Kasim Riau].

Ghufron, M. I., Supriyati, E., & Listyorini, T. (2024). Analisa jejaring sosial terhadap fenomena cyberbullying fandom K-Pop pada media sosial Twitter. JISKA (Jurnal Informatika Sunan Kalijaga), 9(2), 79–93. https://doi.org/10.14421/jiska.2024.9.2.79-93

Harjanta, J., & Tri, A. (2015). Preprocessing text untuk meminimalisir kata yang tidak berarti dalam proses text mining. Jurnal Informatika UPGRIS, 1(1). http://journal.upgris.ac.id/index.php/JIU/article/download/804/1047

Irwana, T. M., & Hermawan, D. (2022). Cultural identity of Attack on Titan fans on social media Twitter in Indonesia. Izumi, 11(2), 74–82. https://doi.org/10.14710/izumi.11.2.74-82

Kusumaningtyas, J. (2025). Pemanfaatan algoritma text mining untuk pengelolaan sistem informasi koleksi perpustakaan melalui analisis ulasan buku di media sosial. The Light Journal of Librarianship and Information Science, 5(1), 43–50. https://doi.org/10.20414/light.v5i1.11381

Lee, Y., & Park, S. (2025). Classifying and characterizing fandom activities: A focus on superfans’ posting and commenting behaviors in a digital fandom community. Applied Sciences, 15(9), Article 4723. https://doi.org/10.3390/app15094723

Muhayat, T., Fauzi, A., & Indra, J. (2023). Analisis sentimen terhadap komentar video YouTube menggunakan support vector machines. Progresif: Jurnal Ilmiah Komputer, 19(1), 231–238. https://doi.org/10.35889/progresif.v19i1.1060

Porreca, A., Scozzari, F., & Di Nicola, M. (2020). Using text mining and sentiment analysis to analyse YouTube Italian videos concerning vaccination. BMC Public Health, 20(1), Article 259. https://doi.org/10.1186/s12889-020-8342-4

Qi, Y., & Shabrina, Z. (2023). Sentiment analysis using Twitter data: A comparative application of lexicon- and machine-learning-based approach. Social Network Analysis and Mining, 13(1), Article 58. https://doi.org/10.1007/s13278-023-01030-x

Sa’diyah, I., & Sibarani, M. A. J. A. (2022). Analisis ujaran kebencian di kolom komentar YouTube Puan Maharani. Prosiding Seminar Nasional Sains Data, 2(1), 1–7. https://doi.org/10.33005/senada.v2i1.30

Downloads

Published

2026-01-22

How to Cite

Aviliani Putri, & Rouli Doharma. (2026). Identifikasi Topik Populer Fandom Alien Stage pada Round 6 Berdasarkan Komentar Youtube Menggunakan Text Mining. Jurnal Ilmiah Teknik Informatika Dan Komunikasi, 6(1), 257–266. https://doi.org/10.55606/juitik.v6i1.2019

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.