Penerapan Data Mining Dalam Analisis Prediksi Kanker Paru Menggunakan Algoritma Random Forest
DOI:
https://doi.org/10.55606/juitik.v3i2.472Keywords:
Confusion Matrix, Data Mining, Lung Cancer, Optimize Selection, Random ForestAbstract
Lung cancer is one of the one of the leading causes of death in the world. From this data there are several categories of people who are positive and negative for lung cancer, Here the researcher will display information on the exact number of people who
contracted lung cancer from the data, and in this study using the Random Forest algorithm because Random Forest This research uses the Random Forest algorithm because Random Forest has a data set selection process. Has a data set selection process. to improve the performance of classification model. With feature selection, Random Forest can certainly work efficiently on big data with complex parameters, which will greatly facilitate the classification of positive and negative lung cancer patients. Observations will be a reference for analyzing the prognosis of lung disease. Observation will be a reference for analyzing the prognosis of lung disease here how the application of data data mining techniques on the prediction analysis of lung cancer analysis and how performance of the random forest algorithm in predicting lung cancer.by applying data mining techniques and has been tested using a survey dataset of lung cancer survey dataset and using software called Rapidminer toanalyze and predict positive patients with lung cancer It was concluded that the It is concluded that the Random Forest algorithm that has obtained the greatest accuracy obtained accuracy results worth 90.61% with an AUC value of 0.941.
References
Halim, V. G., Darwis, Y., Rahmiati, R., Limantara, S., & Isa, M. (2020). Gambaran Tingkat Depresi pada Pasien Kanker Paru di RSUD Ulin Banjarmasin. Homeostasis, 3(2), 309–318.
Haristu, R. A., & Rosa, P. H. P. (2019). Penerapan Metode Random Forest Untuk Prediksi Win Ratio Pemain Player Unknown Battleground. Media Informasi Analisa Dan Sistem, 2, 120–128.
Idris, M. (2019). Implementasi Data Mining Dengan Algoritma Naïve Bayes Untuk Memprediksi Angka Kelahiran. Pelita Informatika: Informasi Dan Informatika, 7(3), 421–428.
Jonathan, C. N. (2019). Implementasi Metode Algoritma Genetika Pada Penentuan Menu Makanan Untuk Membentuk Berat Badan Ideal. Jurnal Teknologi Informasi Dan Terapan, 6(1), 35–40.
Khasanah, N. A., Oktaviyanti, I. K., & Yuliana, I. (2019). Hubungan riwayat merokok dan tempat tinggal dengan gambaran sitopatologi kanker paru. Homeostasis, 2(1), 93–98.
Kusmardika, D. A. (2020). Potensi aktivitas antioksidan daun kelor (Moringa oleifera) dalam mencegahan kanker. Journal of Health Science and Physiotherapy, 2(1), 46–50.
Mulyahati, I. L. (2020). Implementasi Machine Learning Prediksi Harga Sewa Apartemen Menggunakan Algoritma Random Forest Melalui Framework Website Flask Python (Studi Kasus: Apartemen di DKI Jakarta Pada Website mamikos. com).
Prakoso, B. S., Rosiyadi, D., Aridarma, D., Utama, H. S., Fauzi, F., & Qhomar, M. A. N. (2019). Optimalisasi Klasifikasi Berita Menggunakan Feature Information Gain Untuk Algoritma Naive Bayes Terhubung Random Forest. Jurnal PILAR Nusa Mandiri, 15(2), 211–218.
Ramadhaniaha, F., & Syarifb, S. (2020). Studi Tinjauan Pustaka: Risiko Kejadian Kanker Paru pada Penderita Tuberkulosis Paru. Jurnal Epidemiologi Kesehatan Indonesia Vol, 4(1).
Saputra, E. W. (2019). Optimasi fungsi keanggotaan fuzzy Mamdani menggunakan algoritma genetika untuk penentuan penerima beasiswa. Jurnal SIMADA (Sistem Informasi Dan Manajemen Basis Data), 2(2), 160–175
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Jurnal Ilmiah Teknik Informatika dan Komunikasi
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.