Data Mining Menggunakan Decision Tree untuk Prediksi Nilai Akhir Siswa

Authors

  • Nuari Anisa Sivi Universitas Nahdlatul Ulama Lampung
  • Imam Mualim Universitas Nahdlatul Ulama Lampung
  • Cahya Arnitha Lestari Universitas Nahdlatul Ulama Lampung

DOI:

https://doi.org/10.55606/juitik.v4i3.1824

Keywords:

Data Mining, Decision Tree, Value Prediction, Educational Data Mining

Abstract

The development of information technology has encouraged educational institutions to make more optimal use of academic data in order to improve the quality of learning evaluation. Data such as assignment scores, quizzes, midterm exams, final exams, and student attendance are no longer just administrative archives, but can be processed using Educational Data Mining (EDM) techniques to generate new information that supports the academic decision-making process. This study aims to build a model for predicting students' final grades using the Decision Tree algorithm by utilizing these academic attributes as input variables. The research process was carried out in several stages, starting from data collection, preprocessing, data transformation, classification model formation, to performance evaluation using a confusion matrix and accuracy calculations. The results of the study show that the Decision Tree algorithm is capable of classifying students' final grades with an accuracy of 80%. Feature importance analysis reveals that final exam scores are the most influential attribute in the formation of decision tree structures, followed by midterm exam scores, while assignment, quiz, and attendance scores contribute less. These findings indicate that summative evaluation plays a dominant role in determining students' final grades. Overall, this study proves that Decision Tree is an effective classification method that is easy to interpret and highly relevant for use in the context of EDM, especially in helping schools conduct objective and data-driven student performance analysis.

References

Alvian Setiono, S., & Purwanto, E. (2025). Prediksi Kelulusan Mahasiswa Menggunakan Algoritma Decision Tree. Prosiding Seminar Nasional Teknologi Informasi Dan Bisnis, 401–406. https://doi.org/10.47701/4q3z9j41

Ardianti, M., Nurhayati, O. D., & Warsito, B. (2024). Model Prediksi Kinerja Siswa Berdasarkan Data Log LMS Menggunakan Ensemble Machine Learning. JST (Jurnal Sains Dan Teknologi), 12(3). https://doi.org/10.23887/jstundiksha.v12i3.59816

Elvida, N., & Sari, A. M. (2024). Penerapan Data Mining untuk Prediksi Kelulusan Siswa SD Negeri Sukaresmi Kota Bogor Dengan Alogaritma C4.5. https://attractivejournal.com/index.php/bce/

Esposito, F., Malerba, D., Semeraro, G., & Kay, J. (2020). A comparative analysis of methods for pruning decision trees. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(5), 476–493. https://doi.org/10.1109/34.589207

Han, J., & Kamber, M. (2022). 05_dbdm2007_Data Mining.

Irfan, D., Ramadani, P., Nasution, A. S., & Ramadan, J. B. (2021). JURNAL MEDIA INFORMATIKA [JUMIN] Prediksi hasil belajar mahasiswa pada PBL menggunakan algoritma Decision Tree untuk evaluasi pembelajaran.

Loh, W. (2021). Classification and regression trees. WIREs Data Mining and Knowledge Discovery, 1(1), 14–23. https://doi.org/10.1002/widm.8

Manullang, N., Sembiring, R. W., Gunawan, I., Parlina, I., & Irawan, I. (2021). Implementasi Teknik Data Mining untuk Prediksi Peminatan Jurusan Siswa Menggunakan Algoritma C4.5. Jurnal Ilmu Komputer Dan Teknologi, 2(2), 1–5. https://doi.org/10.35960/ikomti.v2i2.700

Muriyatmoko, D., Musthafa, A., & Wijaya, M. H. (2023). Klasifikasi Profil Kelulusan Nilai AKPAM Dengan Metode Decision Tree C4.5.

Peña-Ayala, A. (2024). Educational data mining: A survey and a data mining-based analysis of recent works. Expert Systems with Applications, 41(4), 1432–1462. https://doi.org/10.1016/j.eswa.2013.08.042

Putra, H., Nasution, K., & Rilvani, E. (2025). PT. Media Akademik Publisher PREDIKSI KELULUSAN MAHASISWA TEPAT WAKTU. JMA), 3(7), 3031–5220. https://doi.org/10.23887/jpi-undiksha.v10i2.30020

Ramadhan, P., Yuhandri, & Veri, J. (2025). Eksplorasi Algoritma Decision Tree untuk Penentuan Siswa Berprestasi. Bit-Tech, 7(3), 826–833. https://doi.org/10.32877/bt.v7i3.2210

Romero, C., & Ventura, S. (2021). Educational Data Mining: A Review of the State of the Art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601–618. https://doi.org/10.1109/TSMCC.2010.2053532

Slamet Kusworo, Nugroho Adhi Santoso, & Rifki Dwi Kurniawan. (2024). Prediksi Nilai Akhir Semester Siswa Menggunakan Algoritma Random Forest. Jurnal Sains Dan Ilmu Terapan, 7(2), 246–256. https://doi.org/10.59061/jsit.v7i2.918

Vincencius Andreas Suyanto, R., & Rusdianto, E. (2024). Penerapan Algoritma Decision Tree C4.5 dan Metode AdaBoost Untuk Prediksi Kelulusan Mahasiswa.

Yağcı, M. (2022). Educational data mining: prediction of students’ academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 11. https://doi.org/10.1186/s40561-022-00192-z

Yuningsih, L., Setiawan, I. R., & Sunarto, A. A. (2020). Rancangan Aplikasi Prediksi Kelulusan Siswa Menggunakan Algoritma C4.5. Progresif: Jurnal Ilmiah Komputer, 16(2), 121. https://doi.org/10.35889/progresif.v16i2.517

Zhou, Z.-H., Wu, J., & Tang, W. (2022). Ensembling neural networks: Many could be better than all. Artificial Intelligence, 137(1–2), 239–263. https://doi.org/10.1016/S0004-3702(02)00190-X

Downloads

Published

2024-11-30

How to Cite

Nuari Anisa Sivi, Imam Mualim, & Cahya Arnitha Lestari. (2024). Data Mining Menggunakan Decision Tree untuk Prediksi Nilai Akhir Siswa. Jurnal Ilmiah Teknik Informatika Dan Komunikasi, 4(3), 26–36. https://doi.org/10.55606/juitik.v4i3.1824

Similar Articles

<< < 6 7 8 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.