Analisis Komparatif VGG19 pada Data Kanker Payudara Berbasis Augmentasi

Authors

  • Maie Istighosah Universitas Telkom
  • Yudha Islami Sulistya Universitas Telkom

DOI:

https://doi.org/10.55606/juitik.v5i3.1643

Keywords:

Augmentation, Breast Cancer, Class Imbalance, Grad-CAM, VGG19

Abstract

Class imbalance in breast cancer imaging often leads to models prioritizing the majority class, reducing sensitivity to actual cancer cases. This study evaluates data augmentation as a class balancing strategy for breast cancer classification using VGG19 with transfer learning. The model was trained and tested in two settings: before and after augmentation, to measure performance improvement. The results show a clear improvement after balancing, with accuracy rising from 94.63% to 97.59%, recall and specificity increasing from about 85.60% to 97.58%, and the F1 score rising from 0.8933 to 0.9759, indicating better balance between precision and recall. Interpretability analysis using Grad-CAM supports this improvement, with activations before augmentation being spread out and sometimes focusing on background artifacts, while the heatmap after augmentation concentrated on the lesion region, indicating that the network learned clinically meaningful features. Overall, the findings demonstrate that targeted augmentation effectively addresses class imbalance, enhances generalization, and improves lesion detection with VGG19. This approach enhances cancer sensitivity while reducing false alarms, supporting its potential for adoption in computer-aided diagnostic pipelines to provide more reliable breast cancer detection in clinical practice.

References

Abdikenov, B., Rakishev, D., Orazayev, Y., & Zhaksylyk, T. (2025). Enhancing breast lesion detection in mammograms via transfer learning. Journal of Imaging, 11(9), 314. https://doi.org/10.3390/jimaging11090314

Ahirwar, M., & Agrawal, A. (2023). Performance analysis of deep learning models over BreakHis dataset using up-sampling and down-sampling techniques for classification of breast cancer. In Proceedings of the 9th International Conference on Smart Computing and Communications (ICSCC 2023) (pp. 594–599). https://doi.org/10.1109/ICSCC59169.2023.10334935

Alekseev, A., Shcherbakov, V., Avdieiev, O., Denisov, S. A., Kubytskyi, V., Blinchevsky, B., Murokh, S., Ajeer, A., Adams, L., Greenwood, C., Rogers, K., Jones, L. J., Mourokh, L., & Lazarev, P. (2025). Benign/cancer diagnostics based on X-ray diffraction: Comparison of data analytics approaches. Cancers, 17(10). https://doi.org/10.3390/cancers17101662

Alshamrani, S. S. (2025). Machine learning techniques improving the Box–Cox transformation in breast cancer prediction. Electronics, 14(16). https://doi.org/10.3390/electronics14163173

Aqdar, K. B., Abdalla, P. A., Mustafa, R. K., Abdulqadir, Z. H., Qadir, A. M., Shali, A. A., & Aziz, N. M. (2024). Mammogram mastery: A robust dataset for breast cancer detection and medical education [Dataset]. (Sumber/platform belum dicantumkan)

Aygün, E. N., & Kaya, M. (2024). Medical image segmentation with U-Net for breast cancer and lump type prediction. In Proceedings of the 2024 International Conference on Decision Aid Sciences and Applications (DASA 2024). https://doi.org/10.1109/DASA63652.2024.10836584

Becirovic, M., Kurtovic, A., Pozderac, D., & Omanovic, S. (2024). Ultrasound breast cancer image classification with GAN-based synthetic data augmentation. In Proceedings of the 2024 32nd Telecommunications Forum (TELFOR 2024). https://doi.org/10.1109/TELFOR63250.2024.10819074

Blahová, L., Kostolný, J., & Cimrák, I. (2025). Neural network-based mammography analysis: Augmentation techniques for enhanced cancer diagnosis—A review. Bioengineering, 12(3). https://doi.org/10.3390/bioengineering12030232

Cheruvathoor, J. M., & Babu, N. V. (2025). Advanced ensemble learning and feature enhancement for robust breast cancer classification in histopathological images. In Proceedings of the 2025 International Conference on Data Science, Agents and Artificial Intelligence (ICDSAAI 2025). https://doi.org/10.1109/ICDSAAI65575.2025.11011593

Conte, L., Rizzo, R., Sallustio, A., Maggiulli, E., Capodieci, M., Tramacere, F., Castelluccia, A., Raso, G., De Giorgi, U., Massafra, R., Portaluri, M., Cascio, D., & De Nunzio, G. (2025). Radiomics and machine learning approaches for the preoperative classification of in situ vs. invasive breast cancer using dynamic contrast-enhanced magnetic resonance imaging (DCE–MRI). Applied Sciences, 15(14). https://doi.org/10.3390/app15147999

Desai, A., & Mahto, R. (2025). Multi-class classification of breast cancer subtypes using ResNet architectures on histopathological images. Journal of Imaging, 11(8). https://doi.org/10.3390/jimaging11080284

Dhomane, L., & Shinde, S. (2023). Enhancing breast cancer diagnosis with deep learning in histopathology images. In Proceedings of the 2023 1st DMIHER International Conference on Artificial Intelligence in Education and Industry 4.0 (IDICAIEI 2023). https://doi.org/10.1109/IDICAIEI58380.2023.10406323

Długosz-Pokorska, A., Janecki, T., Janecka, A., & Gach-Janczak, K. (2025). Synergistic effects of oxaliplatin, 5-fluorouracil, and novel synthetic uracil analog U-359 on breast cancer cell carcinogenesis. International Journal of Molecular Sciences, 26(7). https://doi.org/10.3390/ijms26072964

Fan, Y., Sun, K., Xiao, Y., Zhong, P., Meng, Y., Yang, Y., Du, Z., & Fang, J. (2025). Deep learning predicts HER2 status in invasive breast cancer from multimodal ultrasound and MRI. Biomolecules and Biomedicine. https://doi.org/10.17305/bb.2025.12475

Hu, M., Zhang, L., Wang, X., & Xiao, X. (2025). Enhanced HER-2 prediction in breast cancer through synergistic integration of deep learning, ultrasound radiomics, and clinical data. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-12825-7

Jain, E., & Singh, A. (2024). Revolutionizing breast cancer diagnosis: VGG16’s breakthrough in histopathological image classification. In Proceedings of the 2024 4th International Conference on Soft Computing for Security Applications (ICSCSA 2024) (pp. 386–391). https://doi.org/10.1109/ICSCSA64454.2024.00068

Kaushik, P., & Choudhary, S. (2024). Enhanced breast cancer detection using ResNet50V2-based convolutional neural networks. In Proceedings of the 2024 4th International Conference on Soft Computing for Security Applications (ICSCSA 2024) (pp. 374–379). https://doi.org/10.1109/ICSCSA64454.2024.00066

Kaushik, P., & Sharma, P. (2024). A MobileNetV3-based approach to breast cancer detection through transfer learning and histopathological image analysis. In Proceedings of the 3rd International Conference on Advances in Computing, Communication and Materials (ICACCM 2024). https://doi.org/10.1109/ICACCM61117.2024.11059095

Majanga, V., Mnkandla, E., Wang, Z., & Moulla, D. K. (2025a). Active contours connected component analysis segmentation method of cancerous lesions in unsupervised breast histology images. Bioengineering, 12(6). https://doi.org/10.3390/bioengineering12060642

Majanga, V., Mnkandla, E., Wang, Z., & Moulla, D. K. (2025b). Automatic blob detection method for cancerous lesions in unsupervised breast histology images. Bioengineering, 12(4). https://doi.org/10.3390/bioengineering12040364

Maruf, N. A., Basuhail, A., & Ramzan, M. U. (2025). Enhanced breast cancer diagnosis using multimodal feature fusion with radiomics and transfer learning. Diagnostics, 15(17). https://doi.org/10.3390/diagnostics15172170

Momtahen, M., & Golnaraghi, F. (2025). A multitask CNN for near-infrared probe: Enhanced real-time breast cancer imaging. Sensors, 25(8). https://doi.org/10.3390/s25082349

Oza, P., Sharma, P., Patel, S., Adedoyin, F., & Bruno, A. (2022). Image augmentation techniques for mammogram analysis. Journal of Imaging, 8(5). https://doi.org/10.3390/jimaging8050141

Rai, H. M., Yoo, J., Agarwal, S., & Agarwal, N. (2025). LightweightUNet: Multimodal deep learning with GAN-augmented imaging data for efficient breast cancer detection. Bioengineering, 12(1). https://doi.org/10.3390/bioengineering12010073

Sappa, N., & Lingam, G. (2025). An adaptive Cycle-GAN-based augmented LIME-enabled multi-stage transfer learning model for improving breast tumor detection using ultrasound images. Electronics, 14(8). https://doi.org/10.3390/electronics14081571

Wang, Y. M., Wang, C. Y., Liu, K. Y., Huang, Y. H., Chen, T. B., Chiu, K. N., Liang, C. Y., & Lu, N. H. (2024). CNN-based cross-modality fusion for enhanced breast cancer detection using mammography and ultrasound. Tomography, 10(12), 2038–2057. https://doi.org/10.3390/tomography10120145

Downloads

Published

2025-10-18

How to Cite

Maie Istighosah, & Yudha Islami Sulistya. (2025). Analisis Komparatif VGG19 pada Data Kanker Payudara Berbasis Augmentasi. Jurnal Ilmiah Teknik Informatika Dan Komunikasi, 5(3), 443–459. https://doi.org/10.55606/juitik.v5i3.1643

Similar Articles

You may also start an advanced similarity search for this article.