Sistem Pakar Mendiagnosa Penyakit pada Mentimun Menggunakan Fuzzy Mamdani
DOI:
https://doi.org/10.55606/juitik.v5i3.1623Keywords:
Cucumber, Early Detection, Expert System, Fuzzy Mamdani, Plant DiseasesAbstract
Cucumber is a horticultural crop with numerous benefits, both in the food and industrial sectors. Cucumber production in Kupang City has seen a notCucumber is a horticultural crop with numerous benefits, both in the food and industrial sectors. Cucumber production in Kupang City has seen a noticeable decline in recent years. One of the main driving factors is the infestation of plant diseases such as yellowing leaves, powdery mildew, and root rot, which impact crop yields and farmer income. To address this issue, an expert system capable of detecting cucumber plant diseases using Mamdani Fuzzy Logistics (FUZZ). The Mamdani Fuzzy Logistics method was chosen because of its decision-making capabilities and its easy-to-understand linguistic-based rules. This system is designed to enable farmers to detect diseases early, take appropriate mitigation measures, and reduce the risk of crop failure. Implementing this technology is expected to increase efficiency in agricultural management and maintain cucumber production. Testing results on 20 cucumber plant data samples using the Mean Absolute Percentage Error (MAPE) yielded an error of 10%. The results showed that two cucumber plant samples showed diagnostic inconsistencies. With this system, farmers are expected to be able to more quickly identify the types of diseases that endanger cucumber plants and also obtain recommendations for appropriate solutions to handle the problem, thereby being able to maintain agricultural productivity.iceable decline in recent years. One of the main driving factors is the infestation of plant diseases such as yellowing leaves, powdery mildew, and root rot, which impact crop yields and farmer income. To address this issue, an expert system capable of detecting cucumber plant diseases using Mamdani Fuzzy Logistics (FUZZ). The Mamdani Fuzzy Logistics method was chosen because of its decision-making capabilities and its easy-to-understand linguistic-based rules. This system is designed to enable farmers to detect diseases early, take appropriate mitigation measures, and reduce the risk of crop failure. Implementing this technology is expected to increase efficiency in agricultural management and maintain cucumber production. Testing results on 20 cucumber plant data samples using the Mean Absolute Percentage Error (MAPE) yielded an error of 10%. The results showed that two cucumber plant samples showed diagnostic inconsistencies. With this system, farmers are expected to be able to more quickly identify the types of diseases that endanger cucumber plants and also obtain recommendations for appropriate solutions to handle the problem, thereby being able to maintain agricultural productivity.
References
Aliniy, A., Pasrun, Y. P., & Sumpala, A. T. (2023). Prediksi jumlah mahasiswa baru FTI USN Kolaka menggunakan metode single exponential smoothing. SATESI: Jurnal Sains Teknologi dan Sistem Informasi, 3(1), 20–25. https://doi.org/10.54259/satesi.v3i1.1573
Ariyani, F., Rustianti, S., & Purwanto, A. (2022). Budidaya tanaman mentimun (Cucumis sativus L.) pada media tanam arang sekam bakar. Jurnal Pengabdian Masyarakat Bumi Raflesia, 5(1), 832–836. https://doi.org/10.36085/jpmbr.v5i1.1868
Arwidiyarti, D., Juhartini, J., & Erniwati, S. (2024). Sistem pakar mendiagnosis penyakit mata manusia menggunakan metode Fuzzy Mamdani. Jurnal PROCESSOR, 19(1). https://doi.org/10.33998/processor.2024.19.1.1627
Athiyah, U., Handayani, A. P., Aldean, M. Y., Putra, N. P., & Ramadhani, R. (2021). Sistem inferensi fuzzy: Pengertian, penerapan dan manfaatnya. Journal of Dinda: Data Science, Information Technology, and Data Analytics, 1(2), 73–76. https://doi.org/10.20895/dinda.v1i2.201
Dona, D., Maradona, H., & Masdewi, M. (2021). Sistem pakar diagnosa penyakit jantung dengan metode case-based reasoning (CBR). ZONAsi: Jurnal Sistem Informasi, 3(1), 1–12. https://doi.org/10.31849/zn.v3i1.6442
Effendi, H. (2020). Sistem pakar diagnosa penyakit pada ibu hamil. Teknomatika, 10(1), 9–20. https://ojs.palcomtech.ac.id/index.php/teknomatika/article/view/482
Hendrawan, H., Haris, A., Rasywir, E., & Pratama, Y. (2020). Diagnosis penyakit tanaman karet dengan metode Fuzzy Mamdani. Jurnal Khatulistiwa Informatika, 22(2), 132–138. https://doi.org/10.31294/p.v22i2.8909
KantinIT. (2022). Fuzzy Mamdani: Cara kerja, contoh soal dan implementasi. https://kantinit.com/kecerdasan-buatan/fuzzy-mamdani-cara-kerja-contoh-soal-dan-implementasi/
Khoirul, R. O. (2022). Sistem pakar diagnosis penyakit pada tanaman kelapa sawit berbasis Android menggunakan metode Fuzzy Mamdani [Skripsi, Universitas Lampung]. https://digilib.unila.ac.id/69293
Labolo, A. Y., Anas, A., Betrisandi, B., & Yunus, W. (2022). Penerapan metode Fuzzy Mamdani untuk mendeteksi penyakit telinga pada Puskesmas Marisa. Simtek: Jurnal Sistem Informasi dan Teknik Komputer, 7(1), 69–73. https://doi.org/10.51876/simtek.v7i1.126
Receh.net. (2023). Pengertian metode Fuzzy Mamdani: Penjelasan lengkap dan kelebihan serta kekurangan. https://www.receh.net/pengertian-metode-fuzzy-mamdani/
Sastypratiwi, H., & Nyoto, R. D. (2020). Analisis data artikel sistem pakar menggunakan metode systematic review. JEPIN (Jurnal Edukasi dan Penelitian Informatika, 6(2), 250–257. https://doi.org/10.26418/jp.v6i2.40914
Septima, R. (2023). Buku referensi sistem inferensi fuzzy dengan metode Mamdani. https://repository.penerbiteureka.com/publications/566968/buku-referensi-sistem-inferensi-fuzzy-dengan-metode-mamdani
Sinaga, M. N., Hasibuan, N. A., & Sihite, A. H. (2020). Sistem pakar diagnosa kifosis menerapkan metode Fuzzy Mamdani. Teknologi Informasi, 4, 334–338. https://d1wqtxts1xzle7.cloudfront.net/106198582/2097-libre.pdf
Siregar, N. A., Akram, R., & Fadillah, N. (2023). Sistem pakar diagnosa penyakit pada kucing anggora menggunakan metode Fuzzy Mamdani berbasis website. CHAIN: Journal. https://doi.org/10.58602/chain.v1i2.30
Sudarwati, L., & Nasution, N. F. (2024). Upaya pemerintah dan teknologi pertanian dalam meningkatkan pembangunan dan kesejahteraan petani di Indonesia. Jurnal Kajian Agraria dan Kedaulatan Pangan (JKAKP), 3(1), 1–8. https://doi.org/10.32734/jkakp.v3i1.15847
Sunggu, S. M. O. (2022). Sistem pakar diagnosa penyakit porfiria menerapkan metode Fuzzy Mamdani. Journal Global Technology Computer, 2(1), 1–7. https://doi.org/10.47065/jogtc.v2i1.2460
Wibowo, H., & Hidayat, S. (2021). Perbandingan metode ARIMA dan artificial neural network dalam peramalan data inflasi. Jurnal Teknologi dan Sistem Komputer, 7(2), 123–130. https://ejurnal.ung.ac.id/index.php/Euler/article/view/23054/7736
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Ilmiah Teknik Informatika dan Komunikasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.