Penerapan Sistem HRMS Berbasis Web untuk Seleksi dan Rekomendasi Karyawan dengan Metode K – Nearest Neighbor (KNN)

Authors

  • Anisya Avishtya Indra Universitas Harapan Medan
  • Ihsan Lubis Universitas Harapan Medan

DOI:

https://doi.org/10.55606/juisik.v5i1.1521

Keywords:

Employee Recommendation, Employee Selection, HRMS System, K-Nearestn Neighbor (KNN), Web

Abstract

This research develops a website-based Human Resource Management System (HRMS) that applies the K-Nearest Neighbor (KNN) method for the selection and recommendation of permanent employees. The background to the development of this system is the challenges in the manual employee selection process, such as the large number of applicants, the difficulty of objective assessment, and the time required, which affects company productivity. The main objective of this research is to accelerate and simplify the selection process, reduce unfair assessments, and improve the accuracy of recruitment decisions. This system is designed to automatically analyze applicant data (including education level, work experience, and psychological test results) based on patterns from previous employee data. The results of this study indicate that the developed system is able to analyze applicant data and provide more accurate recommendations, significantly saving time and effort for the HR department, and producing more objective selection decisions that are in line with company needs. Thus, this system contributes to increasing efficiency, fairness, and quality in the recruitment process. In addition, the use of the K-Nearest Neighbor (KNN) method in this system provides advantages because this algorithm is able to classify data based on the level of similarity with previous data. This ensures more accurate and consistent recommendations, as they are based on historical employee patterns that have proven successful within the company. This helps HR reduce subjectivity in assessments, as selection decisions are not based solely on intuition or individual preferences, but rather on measurable, data-driven analysis. This HRMS system also has the potential for broader development, such as integration with other machine learning technologies capable of predicting long-term employee performance, or linking it to the company's performance management system.

References

Andriani, T., & Purnomo, H. D. (2021). Perancangan Aplikasi Perekrutan Karyawan Berbasis Web Menggunakan Platform Pega. 17(2), 72-85. https://doi.org/10.24246/aiti.v17i2.72-85

Butsianto, S., Naya, C., Informatika, T., & Bangsa, U. P. (2023). Model Aplikasi Human Resource Management Sistem ( HRIS ) Dengan Framework UniGui. 4(1), 81-88 https://doi.org/10.47065/bit.v4i1.507

Dan, J. I., Informatika, T., & Nusantara, U. D. (2023). PERANCANGAN HUMAN RESOURCE INFORMATION SYSTEM. 3(2), 164-172. https://doi.org/10.55606/jitek.v3i2.1846

Hamonangan, J. F. (n.d.). PERANCANGAN SISTEM KEPEGAWAIAN ( HUMAN RESOURCE MANAGEMENT ) BERBASIS WEB MENGGUNAKAN FRAMEWORK CODEIGNITER DI RUMAH SAKIT ADVENT BANDAR LAMPUNG DESIGN OF A WEB-BASED EMPLOYMENT SYSTEM ( HUMAN RESOURCES ) WITH CODEIGNITER FRAMEWORK AT ADVENT HOSPITAL BANDAR LAMPUNG. 153-165. https://doi.org/10.36342/teika.v11i2.2612

Informatika, J., Rekayasa, D., Jakakom, K., Dinata, S. C., B, M. R. P., & Rohaini, E. (2022). Perancangan Sistem Pendukung Keputusan Penerimaan Karyawan Baru Pada PT . Tiga Daya Energi Jurnal Informatika Dan Rekayasa Komputer ( JAKAKOM ). 1(April), 99-108. https://doi.org/10.33998/jakakom.2022.2.1.54

Jurnal, G., & Ilmu, M. (2024). Gudang Jurnal Multidisiplin Ilmu Klasifikasi Kemiskinan Di Jawa Timur Menggunakan Data Mining Algoritma K-Nearest Neighbor ( KNN ). 2(November), 284-288.

Lillah, M. R. R., Sa, D., Zulfikar, W. B., & Uriawan, W. (2023). Implementasi Algoritma K-Nearest Neighbor ( KNN ) untuk Analisis Sentimen Pengguna Aplikasi Tokopedia. 02(02), 171-184.

Marbun, N., Ma, S., Solikhah, T., Informatika, T., Pamulang, U., Raya, J., Pamulang, K., Selatan, T., Bemfood, P. T., Jalur, J., Barat, S., Timur, P., & Pinang, K. (2025). PENGEMBANGAN APLIKASI HUMAN RESOURCE INFORMATION SYSTEM ( HRIS ) BERBASIS WEB DENGAN METODE PROTOTYPE. 3(1), 2524-2526.

Marshall, M., Deva, V., Made, N., Marini, I., & Putra, D. (2025). Web-Based Human Resource Management System Using Laravel Framework. 13(1), 20-31. https://doi.org/10.24843/JIM.2025.v13.i01.p03

Mining, D., & Neighbor, K. (2020). Klasifikasi Penyakit Jantung Menggunakan Metode K-Nearest Neighbor. 1(1), 6-10. https://doi.org/10.35957/algoritme.v1i1.431

N, A. R. D., Auliasari, K., & Pranoto, Y. A. (2020). UNTUK SELEKSI CALON KARYAWAN BARU ( Studi Kasus : BFI Finance Surabaya ). 4(2), 14-20. https://doi.org/10.36040/jati.v4i2.2656

Nurrifqi, H., & Fikrillah, F. (2025). KLASIFIKASI PROGRAM BANTUAN SOSIAL MENGGUNAKAN ALGORITMA K- NEAREST NEIGHBOR ( K-NN ) ( STUDI KASUS KECAMATAN MALANGBONG KABUPATEN GARUT ) CLASSIFICATION OF SOCIAL ASSISTANCE PROGRAMS USING K-NEAREST NEIGHBOR ALGORITHM ( K-NN ) ( CASE STUDY : MALANGBONG DISTRICT , GARUT REGENCY ). 11(3).

Penentuan, T., Kredit, R., Kecil, M., & Menengah, D. A. N. (2023). Jurnal Indonesia : Manajemen Informatika dan Komunikasi Jurnal Indonesia : Manajemen Informatika dan Komunikasi. 4(1), 212-223. https://doi.org/10.35870/jimik.v4i1.163

Purnama, C. A., Santi, I. H., Mawaddah, U., Studi, P., Informatika, T., Balitar, U. I., & Weighting, S. A. (2023). SISTEM SELEKSI REKRUITMEN KARYAWAN BARU PADA PT MAYANGKARA GROUB MENGGUNAKAN FRAMEWORK LARAVEL. 7(5), 3817-3823. https://doi.org/10.36040/jati.v7i5.7855

Sosial, J., Nauli, R., Mutaqin, Z., Rahadian, D. R., & Imam, M. (2025). Perancangan Aplikasi Human Resources Management Berbasis Web ( Studi Kasus PT . Perkasa Satria Nusantara ). 5(4), 945-966. https://doi.org/10.59188/jurnalsostech.v5i4.32076

Zulfa, A. R., Dwi, P., & Pamungkas, A. (2021). Evaluasi Sistem Informasi Human Resources Management Systems PT MMC Metal Fabrication Bekasi. 10, 126-133. https://doi.org/10.32736/sisfokom.v10i1.1055

Downloads

Published

2025-03-30

How to Cite

Anisya Avishtya Indra, & Ihsan Lubis. (2025). Penerapan Sistem HRMS Berbasis Web untuk Seleksi dan Rekomendasi Karyawan dengan Metode K – Nearest Neighbor (KNN). Jurnal Ilmiah Sistem Informasi Dan Ilmu Komputer, 5(1), 410–426. https://doi.org/10.55606/juisik.v5i1.1521

Similar Articles

<< < 7 8 9 10 11 12 

You may also start an advanced similarity search for this article.