Analisis Sentimen terhadap Ulasan Cashless Menggunakan Metode Knowledge Discovery Databases Berbasis Web
DOI:
https://doi.org/10.55606/juisik.v5i1.1507Keywords:
Cashless, Databases, Knowledge Discovery Methods, Review Comments, WebsitesAbstract
Sentiment analysis is the process of automatically extracting, processing, and understanding unstructured text data to obtain sentiment information contained in an opinion. This study conducted a sentiment analysis of cashless reviews using a web-based knowledge discovery database method. The knowledge discovery database method aims to extract hidden knowledge or information in previously unknown data, through the stages of data selection, preprocessing, transformation, data mining, and evaluation of 300 training data and 250 test data. Based on the original labels, there were 46 positive comments and 204 negative comments, while the prediction results showed 34 positive comments and 216 negative comments. The evaluation process produced an accuracy rate of 83.2% for positive labels and 83.2% for negative labels. The precision and recall values differed for each label, namely: positive labels had a precision of 55.88% and negative labels of 87.50%; positive labels had a recall of 41.30% and negative labels of 92.65%. Based on these scores, negative reviews were more dominant than positive reviews regarding the use of cashless. Positive sentiment focused on the ease of transactions through cashless payments, while negative sentiment focused on technical issues during payments, refunds, and frozen PayLater accounts. Therefore, e-commerce platforms implementing cashless payments need to provide better education and ensure transparency of digital processes to ensure users feel safer and more comfortable with cashless transactions.
References
Aghitsni, W. I., & Busyra, N. (2022). JIMEA | Jurnal Ilmiah MEA (Manajemen, Ekonomi, dan Akuntansi). Jurnal Ilmiah MEA (Manajemen, Ekonomi, dan Akuntansi), 6(3), 38–51. https://doi.org/10.31955/mea.v6i3.2271
Alghifari, F., & Juardi, D. (2021). Penerapan data mining pada penjualan makanan dan minuman menggunakan metode algoritma naïve Bayes. Jurnal Ilmiah Informatika, 9(02), 75–81. https://doi.org/10.33884/jif.v9i02.3755
Arsi, P., & Waluyo, R. (2021). Analisis sentimen wacana pemindahan ibu kota Indonesia menggunakan algoritma support vector machine (SVM). Jurnal Teknologi Informasi dan Ilmu Komputer, 8(1), 147. https://doi.org/10.25126/jtiik.0813944
Fitriyani Yapan, U. (n.d.). Penerapan e-commerce sebagai media penjualan online (Studi kasus pada Toko Sinar Terang Bandar Lampung). Z.A. Pagar Alam, 7, 40115.
Hasibuan, M. H., Rahmani, N. A. B., & Aslami, N. (2024). Analisis penggunaan fitur pembayaran online e-commerce dan top up e-wallet terhadap kenyamanan bertransaksi menggunakan BSI Mobile (Studi kasus mahasiswa Universitas Negeri Sumatera Utara). Jesya, 7(2), 2121–2133. https://doi.org/10.36778/jesya.v7i2.1772
Indransyah, R., Chrisnanto, Y. H., Sabrina, P. N., & Kom, S. (2022). Klasifikasi sentimen pergelaran MotoGP di Indonesia menggunakan algoritma correlated naïve Bayes classifier. INFOTECH Journal, 8(2), 60–66. https://doi.org/10.31949/infotech.v8i2.3103
Kusumo, S. (2022). Penerapan web scraping deskripsi produk menggunakan Selenium Python dan framework Laravel. JATISI (Jurnal Teknik Informatika dan Sistem Informasi), 9(4), 3426–3435. https://doi.org/10.35957/jatisi.v9i4.2727
Lim, N. E., & Silalahi, M. (2023). Rancang bangun sistem e-administrasi berbasis CodeIgniter framework di KP2A Batam. Computer and Science Industrial Engineering (COMASIE), 8(1), 37–46. https://doi.org/10.33884/comasiejournal.v8i1.6639
Marsela, A. D., Nathanael, J., & Marchelyta, N. (2022). Penggunaan e-wallet sebagai kemajuan teknologi digital dalam menentukan preferensi masyarakat di Surabaya. Prosiding Seminar Nasional Ilmu Ilmu Sosial, 1, 784–790.
Ordila, R., Wahyuni, R., Irawan, Y., & Yulia Sari, M. (2020). Penerapan data mining untuk pengelompokan data rekam medis pasien berdasarkan jenis penyakit dengan algoritma clustering (Studi kasus: Poli Klinik PT. Inecda). Jurnal Ilmu Komputer, 9(2), 148–153. https://doi.org/10.33060/jik/2020/vol9.iss2.181
Rahayu, W. I., Prianto, C., & Novia, E. A. (2021). Perbandingan algoritma K-means dan naïve Bayes untuk memprediksi prioritas pembayaran tagihan rumah sakit berdasarkan tingkat kepentingan pada PT. Pertamina (Persero). Jurnal Teknik Informatika, 13(2), 1–8.
Tazkia, S. R., Ardi, H. A., Ekonomi, F., & Riau, U. M. (2024). Pengaruh penggunaan cashless payment terhadap kemudahan transaksi konsumen Cafe Monocsky Pekanbaru untuk memanfaatkan kemajuan teknologi baru. Kemudahan Transaksi Merupakan Situasi, 4(1), 20–25.
Wahidna, F. J., & Nerisafitra, P. (2023). Analisis sentimen pengguna sistem pay later menggunakan support vector machine metode pembobotan lexicon. Journal of Informatics and Computer Science (JINACS), 4, 334–343. https://doi.org/10.26740/jinacs.v4n03.p334-343
Widayat, W. (2021). Analisis sentimen movie review menggunakan Word2Vec dan metode LSTM deep learning. Jurnal Media Informatika Budidarma, 5(3), 1018. https://doi.org/10.30865/mib.v5i3.3111
Wulandari, A., Kustina, L., & Nurastuti, P. (2023). Analisis faktor-faktor yang mempengaruhi cashless society. Jurnal Investasi, 9(2), 101–107. https://doi.org/10.31943/investasi.v9i2.271
Yanuar, R. A. A. (2024). Jurnal Teknik Informatika, Vol. 16, No. 2, April 2024. Jurnal Teknik Informatika, 16(2), 1–7. https://ejurnal.ulbi.ac.id/index.php/informatika/article/view/3533
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal ilmiah Sistem Informasi dan Ilmu Komputer

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.