Pengaruh Variasi Ukuran Jendela terhadap Kinerja Klasifikasi Aritmia Berbasis EKG

Authors

  • Indra Abdam Muwakhid Universitas Widya Husada Semarang
  • Dewi Nurdiyah Universitas Semarang

DOI:

https://doi.org/10.55606/juitik.v6i1.2115

Keywords:

Arrhytmia, ECG, KNN, Signal Segmentation, Window Size

Abstract

Arrhythmia detection using electrocardiogram (ECG) signals requires an appropriate segmentation strategy to optimally represent cardiac morphological information. Although time-based windowing is widely applied in automated detection systems, the impact of window size variation on classification performance has not been systematically investigated. This study aims to evaluate the influence of different window sizes on arrhythmia detection performance using the K-Nearest Neighbors (KNN) algorithm. The dataset consists of 48 records from the MIT-BIH Arrhythmia Database sampled at 360 Hz. ECG signals were preprocessed using a 0.5–50 Hz bandpass filter and segmented with window sizes of 180, 360, 720, and 1000 samples using 50% overlap. Time-domain statistical features were extracted and used as input to the classification model. Experimental results indicate that the 180-sample window achieved the best performance, with an accuracy of 89.58% and an F1-score of 83.27%. These findings suggest that shorter segmentation windows increase training data density and are more suitable for distance-based classifiers such as KNN. This study highlights that window size selection is a critical parameter in arrhythmia detection system design and should be aligned with the characteristics of the classification algorithm employed.

References

Acharya, U. R., Fujita, H., Lih, O. S., Hagiwara, Y., Tan, J. H., & Adam, M. (2017). Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network. Information Sciences, 405, 81–90. https://doi.org/10.1016/j.ins.2017.04.012

Battineni, G., Sagaro, G. G., Chintalapudi, N., & Amenta, F. (2021). The Benefits of Telemedicine in Personalized Prevention of Cardiovascular Diseases (CVD): A Systematic Review. Journal of Personalized Medicine, 11(7), 658. https://doi.org/10.3390/jpm11070658

Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C.-K., & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet. Circulation, 101(23). https://doi.org/10.1161/01.CIR.101.23.e215

Hussein, O., Jameel, S. M., Altmemi, J. M., Abbas, M. A., Uğurenver, A., Alkubaisi, Y. M., & Sabry, A. H. (2025). Improving automated labeling with deep learning and signal segmentation for accurate ECG signal analysis. Service Oriented Computing and Applications, 19(2), 93–106. https://doi.org/10.1007/s11761-024-00436-5

Indra Abdam Muwakhid. (2025). Statistical Feature Extraction Based on Wavelet Transform for Arrhythmia Detection. Jurnal Transformatika, 23(1), 30–40. https://doi.org/10.26623/transformatika.v23i1.12339

Jambukia, S. H., Dabhi, V. K., & Prajapati, H. B. (2018). ECG beat classification using machine learning techniques. International Journal of Biomedical Engineering and Technology, 26(1), 32. https://doi.org/10.1504/IJBET.2018.089255

Llamedo, M., & Martínez, J. P. (2011). Heartbeat Classification Using Feature Selection Driven by Database Generalization Criteria. IEEE Transactions on Biomedical Engineering, 58(3), 616–625. https://doi.org/10.1109/TBME.2010.2068048

Malik, J., Devecioglu, O. C., Kiranyaz, S., Ince, T., & Gabbouj, M. (2022). Real-Time Patient-Specific ECG Classification by 1D Self-Operational Neural Networks. IEEE Transactions on Biomedical Engineering, 69(5), 1788–1801. https://doi.org/10.1109/TBME.2021.3135622

Moody, G. B., & Mark, R. G. (2001). The impact of the MIT-BIH Arrhythmia Database. IEEE Engineering in Medicine and Biology Magazine, 20(3), 45–50. https://doi.org/10.1109/51.932724

Murat, F., Yildirim, O., Talo, M., Baloglu, U. B., Demir, Y., & Acharya, U. R. (2020). Application of deep learning techniques for heartbeats detection using ECG signals-analysis and review. Computers in Biology and Medicine, 120, 103726. https://doi.org/10.1016/j.compbiomed.2020.103726

Niroshana, S. M. I., Kuroda, S., Tanaka, K., & Chen, W. (2023). Beat-wise segmentation of electrocardiogram using adaptive windowing and deep neural network. Scientific Reports, 13(1), 11039. https://doi.org/10.1038/s41598-023-37773-y

Potharaju, S., Raghavulu, K. V., Kumar, N. S. P., Salendra, S., Tambe, S. N., & Kantipudi, M. V. V. P. (2025). Multi-resolution hybrid sliding window approach for ECG arrhythmia detection using deep learning models. Discover Applied Sciences, 7(12), 1412. https://doi.org/10.1007/s42452-025-07940-z

Sahoo, S., Dash, M., Behera, S., & Sabut, S. (2020). Machine Learning Approach to Detect Cardiac Arrhythmias in ECG Signals: A Survey. IRBM, 41(4), 185–194. https://doi.org/10.1016/j.irbm.2019.12.001

Shan, Z., Wang, Z., Yang, J., Zhou, D., & Liu, H. (2023). Extracting non-stationary signal under strong noise background: Time-varying system analysis. Journal of Vibration and Control, 29(17–18), 4036–4045. https://doi.org/10.1177/10775463221109715

Siahaan, M., Panjaitan, S., Purba, A., Cahya, M., & Simarmata, A. (2026). Identifikasi Aritmia pada Lansia menggunakan Algoritma K-Nearest Neighbor berdasarkan Data ElektroKardiogram. Dinamik, 31(1 SE-Articles). https://doi.org/10.35315/dinamik.v31i1.10336

Song, M.-S., & Lee, S.-B. (2024). Comparative study of time-frequency transformation methods for ECG signal classification. Frontiers in Signal Processing, 4. https://doi.org/10.3389/frsip.2024.1322334

V S., M., & R., T. (2024). A Comprehensive Survey of Arrhythmia Classification Techniques. Journal of Trends in Computer Science and Smart Technology, 6(4), 357–373. https://doi.org/10.36548/jtcsst.2024.4.003

Vásquez-Iturralde, F., Flores-Calero, M. J., Grijalva, F., & Rosales-Acosta, A. (2024). Automatic Classification of Cardiac Arrhythmias Using Deep Learning Techniques: A Systematic Review. IEEE Access, 12, 118467–118492. https://doi.org/10.1109/ACCESS.2024.3408282

Downloads

Published

2026-02-12

How to Cite

Indra Abdam Muwakhid, & Dewi Nurdiyah. (2026). Pengaruh Variasi Ukuran Jendela terhadap Kinerja Klasifikasi Aritmia Berbasis EKG. Jurnal Ilmiah Teknik Informatika Dan Komunikasi, 6(1), 530–542. https://doi.org/10.55606/juitik.v6i1.2115

Similar Articles

<< < 1 2 

You may also start an advanced similarity search for this article.