Prediksi Jumlah Kasus Penyakit Demam Berdarah Dengue Menggunakan Metode Long Short-Term Memory (LSTM)

Authors

  • Nurmelidia Larasati Universitas Muhammadiyah Pontianak
  • Sucipto Sucipto Universitas Muhammadiyah Pontianak
  • Syarifah Putri Agustini Alkadri Universitas Muhammadiyah Pontianak

DOI:

https://doi.org/10.55606/juitik.v6i1.2100

Keywords:

Dengue Hemorrhagic Fever, Disease Surveillance, LSTM, Prediction, Time Series

Abstract

Dengue Hemorrhagic Fever (DHF) an infectious disease with fluctuating case numbers that can suddenly increase, posing significant public health challenges. In Pontianak City, 106 cases with 1 death were recorded in 2019, decreasing from 195 cases with 3 deaths in 2018. In 2020, the number dropped further to 27 cases with no fatalities. This condition indicates the need for a prediction system capable of accurately estimating the number of cases to support decision-making processes. This study aims to develop a model for predicting daily DHF cases in Pontianak City using the Long Short-Term Memory (LSTM) method. The data used includes daily DHF cases, average temperature, average humidity, and rainfall from 2020 to 2025. The research stages included data cleaning, normalization using Min-Max Scaling, historical data formation, model training, and evaluation using Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). The best model employed a single LSTM layer with 64 neurons, 50 epochs, and a batch size of 32, yielding an RMSE of 0.87 and MAE of 0.63. These results indicate that the LSTM method is capable of generating predictions close to actual values and is reliable for estimating daily DHF cases in Pontianak City. The developed Streamlit-based application provides interactive visualization and accurate predictions, making it a valuable tool for health authorities in DHF prevention and control efforts.

References

Chen, X., & Moraga, P. (2025). Forecasting dengue across Brazil with LSTM neural networks and SHAP-driven lagged climate and spatial effects. BMC Public Health, 25, 973. https://doi.org/10.1186/s12889-025-22106-7

Dinas Kesehatan Kota Pontianak. (2021). Profil kesehatan Kota Pontianak tahun 2020. Dinas Kesehatan Kota Pontianak.

Farias, L. R. C., Silva, T. P., & Araujo, P. H. M. A. (2025). Multitask LSTM for arboviral outbreak prediction using public health data. arXiv. https://doi.org/10.48550/arXiv.2505.04566

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

Iksan, M. N., Sembiring, M. F., & Harlili. (2020). Prediksi jumlah kasus aktif COVID-19 mingguan di Kota Bandung menggunakan long short-term memory. Jurnal Teknologi dan Sistem Komputer, 8(4), 289–295. https://doi.org/10.14710/jtsiskom.2020.13660

Kementerian Kesehatan Republik Indonesia. (2021). Profil kesehatan Indonesia tahun 2020. Kementerian Kesehatan RI.

Khaira, U., Utomo, P. E. P., Aryani, R., & Weni, I. (2020). A comparison of SARIMA and LSTM in forecasting dengue hemorrhagic fever incidence in Jambi, Indonesia. Journal of Physics: Conference Series, 1566(1), Article 012054. https://doi.org/10.1088/1742-6596/1566/1/012054

Khairunisa, M., Putri, D. M. S. A., & Wijayakusuma, I. G. N. L. (2024). Perbandingan metode machine learning untuk analisis dan prediksi siklus menstruasi. Jurnal Sistem Informasi dan Komputer, 13(1), 45–56.

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning Representations (ICLR).

Majeed, M. A., Shafri, H. Z. M., Wayayok, A., & Zulkafli, Z. (2023). Prediction of dengue cases using the attention-based long short-term memory (LSTM) approach. Geospatial Health, 18(1). https://doi.org/10.4081/gh.2023.1176

Maulana, G., & Aini, N. (2025). Prediksi harga Brent crude oil menggunakan algoritma long short-term memory (LSTM). Jurnal Teknologi Informasi dan Ilmu Komputer, 12(1), 87–96. https://doi.org/10.25126/jtiik.2025.12.1.87

Mehta, A. M., & Patel, K. S. (2024). LSTM-based forecasting of dengue cases in Gujarat: A machine learning approach. Indian Journal of Science and Technology. https://doi.org/10.17485/IJST/v17i6.2349

Sukanda, A., Setiawan, W., & Kurniawan, D. (2023). Prediksi harga cabai rawit merah menggunakan long short-term memory di Kota Tasikmalaya. Jurnal Ilmiah Teknik Informatika, 11(2), 123–132.

World Health Organization. (2021). Dengue and severe dengue. https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue

Yoani, A., Sediono, S., Mardianto, M. F. F., & Pusporani, E. (2024). Prediksi jumlah kejadian banjir bulanan di Indonesia berdasarkan analisis long short-term memory. Jurnal Teknik Informatika dan Sistem Informasi, 10(3), 567–578. https://doi.org/10.28932/jutisi.v10i3.8234

Downloads

Published

2026-02-07

How to Cite

Nurmelidia Larasati, Sucipto Sucipto, & Syarifah Putri Agustini Alkadri. (2026). Prediksi Jumlah Kasus Penyakit Demam Berdarah Dengue Menggunakan Metode Long Short-Term Memory (LSTM). Jurnal Ilmiah Teknik Informatika Dan Komunikasi, 6(1), 478–495. https://doi.org/10.55606/juitik.v6i1.2100

Similar Articles

<< < 2 3 4 5 6 7 

You may also start an advanced similarity search for this article.