Analisis Sentimen terhadap Ulasan Pembeli Smartphone IOS di Platform Shopee Mengunakan Metode Naïve Bayes
DOI:
https://doi.org/10.55606/juitik.v5i3.1712Keywords:
iPhone, Naïve Bayes, Product Reviews, Sentiment Analysis, ShopeeAbstract
The development of digital technology has significantly shifted consumer behavior, especially in online shopping through e-commerce platforms such as Shopee. One of the most sought-after products is smartphones, including the iPhone, which is well-known for its quality and durability. This study aims to analyze user sentiment toward iOS smartphone products from the iBox store on Shopee using the Naïve Bayes method. This method is chosen for its simplicity in handling text classification and relatively high accuracy. The dataset used consists of customer reviews that have been preprocessed and manually labeled. The evaluation results show that the Naïve Bayes algorithm achieves an accuracy of 82.6%, with the best performance on the positive sentiment class (precision 0.95, recall 0.85, f1-score 0.90). However, the model performs poorly on the negative sentiment class, with a precision of only 0.33 and an f1-score of 0.44. These findings indicate that while the model is highly effective at identifying positive sentiment, further improvement is needed to enhance its ability to detect negative sentiment. This research is expected to serve as a reference for businesses such as iBox in understanding customer opinions automatically and making more informed strategic decisions.
References
Alfandi Safira, & Hasan, F. N. (2023). ANALISIS SENTIMEN MASYARAKAT TERHADAP PAYLATER MENGGUNAKAN METODE NAIVE BAYES CLASSIFIER. ZONAsi: Jurnal Sistem Informasi, 5(1), 59–70. https://doi.org/10.31849/zn.v5i1.12856
Alkindi, A. F., & Nasution, N. (2024). ANALISIS SENTIMEN ULASAN PENGGUNA PADA GAME ROBLOX DENGAN METODE SUPPORT VECTOR MACHINE DAN NAIVE BAYES. J-Com (Journal of Computer), 4(2), 164–177. https://doi.org/10.33330/j-com.v4i2.3319
BALARAMAN, S. (2020). Comparison of Classification Models for Breast Cancer Identification using Google Colab. https://doi.org/10.20944/preprints202005.0328.v1
Duei Putri, D., Nama, G. F., & Sulistiono, W. E. (2022). Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (DPR) Pada Twitter Menggunakan Metode Naive Bayes Classifier. Jurnal Informatika Dan Teknik Elektro Terapan, 10(1). https://doi.org/10.23960/jitet.v10i1.2262
Eka Ratri Noor Wulandari, Salnan Ratih Asriningtias, I Dewa Made Widia, Amelia Ika Pratiwi, & Zikrie Pramudia Alfarhisi. (2025). Metode Penelitian Terapan : Implementasinya dalam Pendidikan Vokasi.
Ernianti Hasibuan, & Elmo Allistair Heriyanto. (2022). ANALISIS SENTIMEN PADA ULASAN APLIKASI AMAZON SHOPPING DI GOOGLE PLAY STORE MENGGUNAKAN NAIVE BAYES CLASSIFIER. Jurnal Teknik Dan Science, 1(3), 13–24. https://doi.org/10.56127/jts.v1i3.434
Fikri, M. I., Sabrila, T. S., & Azhar, Y. (2020). Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter. SMATIKA JURNAL, 10(02), 71–76. https://doi.org/10.32664/smatika.v10i02.455
Garcia, K., & Berton, L. (2021). Topic detection and sentiment analysis in Twitter content related to COVID-19 from Brazil and the USA. Applied Soft Computing, 101, 107057. https://doi.org/10.1016/j.asoc.2020.107057
Hendrastuty, N. (2024). Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Dalam Evaluasi Hasil Pembelajaran Siswa. Jurnal Ilmiah Informatika Dan Ilmu Komputer (JIMA-ILKOM), 3(1), 46–56. https://doi.org/10.58602/jima-ilkom.v3i1.26
Indah Nuryani, & Dedi Darwis. (2021). Analisis Clustering Pada Pengguna Brand Hp Menggunakan Metode K-Means. Prosiding Seminar Nasional Ilmu Komputer, 1(1), 190–211.
nasution, donni. (2024). strategi penjualan e-commerce untuk meningkatkan penjulan handphone di era digital . Jurnal Teknologi Ilmu Komputer, 3(1), 155–164.
Novi Karolina. (2021). Data Mining Pengelompokan Pasien Rawat Inap Peserta BPJS Menggunakan Metode Clustering (Studi Kasus : RSU.Bangkatan). JOURNAL OF INFORMATION AND TECHNOLOGY UNIMOR (JITU, 1, 47–53.
Putra, I. G. S. D., & Putra, I. N. T. A. (2025). IMPLEMENTASI METODE NAÏVE BAYES PADA ANALISIS SENTIMEN PENGGUNA APLIKASI MOBILE KITA BISA. Jurnal Informatika Dan Teknik Elektro Terapan, 13(2). https://doi.org/10.23960/jitet.v13i2.6423
Rifa’i, Y. (2023). Analisis Metodologi Penelitian Kulitatif dalam Pengumpulan Data di Penelitian Ilmiah pada Penyusunan Mini Riset. Cendekia Inovatif Dan Berbudaya, 1(1), 31–37. https://doi.org/10.59996/cendib.v1i1.155
Rismayadi, A. A., Dede Kartika Dewi, & Anshori, I. F. (2020). ANALISIS KEPUASAN PENGGUNA SHOPEEPAYLATER MENGGUNAKAN MODEL DELONE & MCLEAN SEBAGAI MEDIA PENGAJUAN KREDIT ONLINE. Jurnal Responsif : Riset Sains Dan Informatika, 2(2), 190–197. https://doi.org/10.51977/jti.v2i2.272
Samsir, Ambiyar, Unung Verawardina, & Firman Ed. (2021). Analisis Sentimen Pembelajaran Daring Pada Twitter di Masa Pandemi COVID-19 Menggunakan Metode Naïve Bayes . JURNAL MEDIA INFORMATIKA BUDIDARMA, 5(1), 157–163.
Syahril, M., Erwansyah, K., & Yetri, M. (2020). Penerapan Data Mining Untuk Menentukan Pola Penjualan Peralatan Sekolah Pada Brand Wigglo Dengan Menggunakan Algoritma Apriori. J-SISKO TECH (Jurnal Teknologi Sistem Informasi Dan Sistem Komputer https://doi.org/10.53513/jsk.v3i1.202
Syarifuddinn, M. (2020). ANALISIS SENTIMEN OPINI PUBLIK MENGENAI COVID-19 PADA TWITTER MENGGUNAKAN METODE NAÏVE BAYES DAN KNN. INTI Nusa Mandiri, 15(1), 23–28. https://doi.org/10.33480/inti.v15i1.1347
Yuliana Restiviani. (2023). PATOLOGI SOSIAL AKIBAT PENGGUNAAN SMARTPHONE DALAM PERSPEKTIF KOMUNIKASI ISLAM. At-Tabayyuun: Journal Islamic Studies, 5(1), 79–101. https://doi.org/10.47766/atjis.v5i1.1771
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Ilmiah Teknik Informatika dan Komunikasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.







