Perangkat Lunak untuk Memprediksi Harga Cryptocurrency Menggunakan Algoritma Support Vector Regression
DOI:
https://doi.org/10.55606/juitik.v5i3.1699Keywords:
Cryptocurrency, Ethereum, GridSearch, Prediction, Support Vector RegressionAbstract
Cryptocurrency is a digital asset that continues to gain popularity due to its decentralized nature and potential for profit, but its high price volatility poses significant challenges for investors. This study aims to develop a price prediction software for Ethereum cryptocurrency using the Support Vector Regression (SVR) algorithm. Historical price data were collected, preprocessed, normalized using MinMaxScaler, and divided into training and testing datasets. The SVR model was optimized using the GridSearch method to obtain the best hyperparameters. Model performance was evaluated using MAE, RMSE, and MAPE, resulting in 199.61 (7.60%), 227.57 (8.66%), and 8.64%, respectively, indicating good predictive accuracy. The software was developed with the Flask framework and tested using Blackbox testing and stress testing via Locust, showing stable system performance with efficient response time. The developed software can serve as a decision-support tool for investors to predict Ethereum prices over various time ranges from 1 to 30 days or more
References
Abe, S. (2010). Support Vector Machines for Pattern Classification (2nd ed.). Springer-Verlag London. https://doi.org/10.1007/978-1-84996-098-4
Aruan, A. P., Siahaan, A., & Simanjuntak, F. (2023). Implementasi Algoritma Support Vector Regression dalam Prediksi Harga Cryptocurrency Menggunakan Dataset Sentimen. Jurnal Teknologi dan Sistem Komputer, 11(2), 87–94. https://doi.org/10.14710/jtsiskom.2023.11.2
Disemadi, H. S., & Delvi, Y. (2021). Analisis Yuridis terhadap Penggunaan Cryptocurrency sebagai Alat Transaksi di Indonesia. Jurnal Ilmiah Kebijakan Hukum, 15(1), 13–28. https://doi.org/10.30641/kebijakan.2021.V15.13-28
Gananta, I. G., Wirawan, I. M., & Santoso, A. (2024). Optimasi Algoritma Support Vector Regression dengan GridSearch untuk Prediksi Harga Emas. Jurnal Informatika dan Sains Komputer, 8(1), 45–52. https://doi.org/10.31294/jisk.2024.8.1
Huda, N., & Hambali, R. (2020). Fintech: Inovasi Sistem Keuangan di Era Digital. Jakarta: Prenadamedia Group.
Isra Miraltamirus, I., Rachmawati, R., & Utami, L. (2023). Prediksi Harga Saham PT Bank Syariah Indonesia Tbk Menggunakan Support Vector Regression (SVR). Jurnal Teknik Informatika dan Sistem Informasi (JTISI), 9(2), 120–127. https://doi.org/10.28932/jtisi.v9i2.5471
Julianto, M., Siregar, T., & Arifin, Z. (2022). Model Prediksi Harga Cryptocurrency Menggunakan Metode Machine Learning. Jurnal Teknologi dan Sistem Komputer, 10(3), 210–219. https://doi.org/10.14710/jtsiskom.2022.10.3
Kripto.ajaib. (2024). Mengenal Ethereum 2.0 dan Pembaruan Proof-of-Stake. Ajaib Crypto Indonesia. Retrieved from https://kripto.ajaib.co.id
Lee, D. K. C., Guo, L., & Wang, Y. (2018). Cryptocurrency: A New Investment Opportunity? The Journal of Alternative Investments, 20(3), 16–40. https://doi.org/10.3905/jai.2018.20.3.016
Lestari, N. P., & Nugroho, S. A. (2021). Prediksi Harga Cryptocurrency Menggunakan Algoritma Support Vector Regression (SVR). Jurnal Teknologi Informasi dan Komunikasi (TIKomSiN), 9(2), 134–142. https://doi.org/10.33322/tikomsin.v9i2.1213
Luthfi, M. A., & Rosyid, A. (2020). Implementasi Metode Support Vector Regression untuk Prediksi Harga Saham. Jurnal Ilmiah Teknologi dan Komputer (JITEK), 5(2), 77–83. https://doi.org/10.33395/jitek.v5i2.10843
Pertiwi, L. N., & Ramadhani, F. (2021). Pengaruh Fluktuasi Harga Bitcoin terhadap Perkembangan Pasar Keuangan Digital di Indonesia. Jurnal Ekonomi dan Kebijakan Publik, 12(3), 223–234. https://doi.org/10.22212/jekp.v12i3.2132
Prasetyo, D. H., & Nurjannah, S. (2023). Analisis Prediksi Harga Saham Menggunakan Support Vector Regression dan Random Forest. Jurnal Ilmu Komputer dan Teknologi Informasi (JIKTI), 11(1), 58–65. https://doi.org/10.33387/jikti.v11i1.5673
Putra, R. D., & Hidayat, M. (2020). Implementasi Flask Framework dalam Pengembangan Aplikasi Web Prediksi Data. Jurnal Teknologi Informasi dan Komunikasi (J-TIK), 8(1), 14–21. https://doi.org/10.33322/jtik.v8i1.1158
Rizki, A., Pratama, D., & Sari, W. (2019). Analisis Perbandingan Algoritma Support Vector Regression dan Regresi Linier pada Peramalan Volatilitas Cryptocurrency. Jurnal Informatika dan Sistem Cerdas (JISC), 6(1), 33–42. https://doi.org/10.26555/jisc.v6i1.1458
Saputra, B., & Gunawan, H. (2022). Evaluasi Kinerja Model Machine Learning untuk Prediksi Harga Aset Digital. Jurnal Teknologi dan Sains Data, 5(2), 92–100. https://doi.org/10.33369/jtsd.v5i2.12543
Setiawan, R., & Hartati, E. (2023). Implementasi Machine Learning dalam Prediksi Harga Saham dan Cryptocurrency. Jurnal Komputer dan Informatika (JKI), 21(1), 34–42. https://doi.org/10.35508/jki.v21i1.437
Suryadi, T., & Utomo, P. (2020). Pengujian Aplikasi Berbasis Web Menggunakan Metode Blackbox Testing. Jurnal Sistem Informasi dan Komputerisasi Akuntansi (JUSIKA), 9(1), 15–21. https://doi.org/10.33395/jusika.v9i1.1193
Wardani, R., & Fadillah, D. (2024). Analisis Kinerja Algoritma Support Vector Regression (SVR) untuk Prediksi Harga Aset Finansial. Jurnal Ilmiah Sistem Cerdas dan Aplikasinya, 12(1), 77–86. https://doi.org/10.33387/jisca.v12i1.5467
Yuliani, D., & Sembiring, S. (2021). Pengaruh Penggunaan Teknologi Finansial terhadap Perilaku Investasi di Indonesia. Jurnal Ekonomi Digital dan Bisnis, 3(2), 104–112. https://doi.org/10.31512/jedb.v3i2.1009
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Ilmiah Teknik Informatika dan Komunikasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.







