Penerapan Content-Based Filtering untuk Rekomendasi Film Netflix Berdasarkan Genre dan Klasifikasi Usia Penonton

Authors

  • Nayottama Nirpataka Universitas Amikom Yogyakarta

DOI:

https://doi.org/10.55606/juitik.v5i3.1494

Keywords:

Content-Based Filtering, Cosine Similarity, Movie, Recommendation System, TF-IDF

Abstract

Recommendation systems have become an essential part of improving user experience, particularly in movie selection. With the ever-increasing number of movie titles, users often experience difficulty in determining which movies suit their interests and needs. Mismatches in movie selection, particularly in terms of age classification, can have negative impacts, particularly for children exposed to inappropriate content. Therefore, a recommendation system is needed that not only considers user preferences but also takes into account age restrictions. This study aims to build a movie recommendation system using a content-based filtering approach, considering two main aspects: genre and age classification. In its implementation, the Term Frequency-Inverse Document Frequency (TF-IDF) method is used as a word weighting technique for movie content information. This weighting is then used to calculate the level of similarity between movies using the Cosine Similarity method. This system is designed to be able to recommend relevant movies based on user preference input, such as the desired movie genre and the appropriate age classification. An evaluation was conducted to measure the extent to which the system is able to provide recommendations that match user preferences. The evaluation results show a similarity value of 1.00 for the genre aspect and 1.00 for the age classification aspect. This score indicates that the system successfully recommended highly relevant films that met the user's specified criteria. Therefore, the developed recommendation system effectively filters and suggests films that are not only content-appropriate but also safe for viewing based on the specified age restrictions.

 

References

Ardiansyah, R., Bianto, M. A., & Saputra, B. D. (2023). Sistem rekomendasi buku perpustakaan sekolah menggunakan metode content-based filtering. Jurnal CoSciTech (Computer Science and Information Technology), 4(2), 510–518. https://doi.org/10.37859/coscitech.v4i2.5131

Avinger, C. L. (2022). TV Parental Guidelines system. EBSCO. Retrieved July 29, 2025, from https://www.ebsco.com/research-starters/communication-and-mass-media/tv-parental-guidelines-system

Azizah, N., & Rozi, A. F. (2024). Sistem rekomendasi produk Somethinc menggunakan metode content-based filtering. Jurnal Teknologi Dan Sistem Informasi Bisnis, 6(3), 461–468. https://doi.org/10.47233/jteksis.v6i3.1411

Azri Saputra, J. M., Huizen, L. M., & Arianto, D. B. (2024). Sistem rekomendasi film pada platform streaming menggunakan metode content-based filtering. Jurnal Transformatika, 22(1), 10–21. https://doi.org/10.26623/transformatika.v22i1.7041

Hadi, G. N. (2019). Sistem rekomendasi film menggunakan metode content-based filtering. Skripsi. http://e-journal.uajy.ac.id/7244/4/3TF03686.pdf

Insan, R., Siagian, P., Khoiriah, N., Priscilia, S. A., Perdana, A., & Komputer, I. (2025). Penerapan machine learning untuk rekomendasi film berdasarkan preferensi pengguna. JATI (Jurnal Teknik Informatika), 9(4), 5658–5662. https://doi.org/10.36040/jati.v9i4.13884

Ismatun Nisak, I., Mukarromah, I., Aditama, L. M., & Zulfahmi, M. N. (2024). Pentingnya filterisasi konten dewasa pada perkembangan sosial emosional anak sekolah dasar. Jurnal Bintang Pendidikan Indonesia, 3(1), 199–209. https://doi.org/10.55606/jubpi.v3i1.3580

Nastiti, P. (2019). Penerapan metode content based filtering dalam implementasi sistem rekomendasi tanaman pangan. Teknika, 8(1), 1–10. https://doi.org/10.34148/teknika.v8i1.139

Rizky, M. Y., & Stellarosa, Y. (2019). Preferensi penonton terhadap film Indonesia. Communicare: Journal of Communication Studies, 4(1), 15. https://doi.org/10.37535/101004120172

Rochmad Wahono, A., Saputra, B. A., & Rahman, F. F. (2024). Sistem rekomendasi film menggunakan metode content-based filtering dan algoritma K-Nearest Neighbors (KNN). Prosiding Seminar Nasional Teknologi Informasi dan Bisnis, 1–6. https://doi.org/10.47701/senatib.v4i1.3994

Rusnawati, R. (2021). Efektivitas sensor mandiri pada orang tua terhadap tontonan anak usia 2–6 tahun. JURNAL HURRIAH: Jurnal Evaluasi Pendidikan dan Penelitian, 2(4), 108–113. https://doi.org/10.56806/jh.v2i4.37

Safitri, J., Atina, V., & Sudibyo, N. A. (2024). Rancang bangun sistem rekomendasi pemilihan drama Korea dengan metode content-based filtering. Infotech, 5(2), 175–189. https://doi.org/10.37373/infotech.v5i2.1235

Salim, E., Pragantha, J., & Manatap, D. L. (2021). Perancangan sistem rekomendasi film menggunakan metode content-based filtering. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 5(6), 2188–2199. https://lintar.untar.ac.id/repository/penelitian/buktipenelitian_10390001_7A281222103549.pdf

Shafina, G. (2023, July 19). Jumlah pelanggan layanan streaming Indonesia kian meningkat. GoodStats Data. Retrieved July 29, 2025, from https://data.goodstats.id/statistic/jumlah-pelanggan-layanan-streaming-indonesia-kian-meningkat-s2q42

Sudarsono, B. G., Leo, M. I., Santoso, A., & Hendrawan, F. (2021). Analisis data mining data Netflix menggunakan aplikasi Rapid Miner. JBASE - Journal of Business and Audit Information Systems, 4(1), 13–21. https://doi.org/10.30813/jbase.v4i1.2729

Sumarlin, E. W., Hansun, S., & Wiratama, Y. W. (2016). Rancang bangun aplikasi rekomendasi film dengan menggunakan algoritma Simple Additive Weighting. Jurnal Informatika, 10(2), 1244–1250. https://doi.org/10.26555/jifo.v10i2.a5066

Downloads

Published

2025-08-11

How to Cite

Nayottama Nirpataka. (2025). Penerapan Content-Based Filtering untuk Rekomendasi Film Netflix Berdasarkan Genre dan Klasifikasi Usia Penonton. Jurnal Ilmiah Teknik Informatika Dan Komunikasi, 5(3), 69–82. https://doi.org/10.55606/juitik.v5i3.1494

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.