Cookgenix.AI: Sistem Rekomendasi Resep Masakan Berbasis Bahan dan Preferensi Pengguna Menggunakan Metode Collaborative Filtering dan FP-Growt

Authors

  • Sarwendra Sarwendra Universitas Satya Terra Bhinneka
  • Krisna Pujanthi Universitas Satya Terra Bhinneka
  • Reva Audia Manurung Universitas Satya Terra Bhinneka
  • Mulyadi Mulyadi Universitas Satya Terra Bhinneka

DOI:

https://doi.org/10.55606/juitik.v5i1.1327

Keywords:

chatbot, recommendation system, cooking recipes, collaborative filtering, FP-Growth, artificial intelligence

Abstract

The development of artificial intelligence (AI) technology has driven innovation in various sectors, including the culinary industry. This study develops Cookgenix.AI, an intelligent chatbot that provides recipe recommendations based on available ingredients and user preferences. This system implements two main methods, namely Collaborative Filtering to understand user preference patterns and FP-Growth to extract associations between ingredients. The evaluation results show that the system is able to provide accurate and relevant recommendations, with a precision of 87% and a recall of 85%. Cookgenix.AI is expected to be a practical solution in efficient and personalized daily menu planning. Keywords: chatbot, recommendation system, recipe, collaborative filtering, FP-Growth, artificial intelligence.

References

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules in large databases. Proceedings of the 20th VLDB Conference, 487–499.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. Proceedings of NAACL-HLT, 4171–4186.

He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T. S. (2017). Neural collaborative filtering. Proceedings of the 26th International Conference on WWW, 173–182.

Huang, G., Xu, W., Yu, K., & Sun, Y. (2020). A survey on context-aware recommendation systems. IEEE Access, 8, 152456–152479.

Jurafsky, D., & Martin, J. H. (2021). Speech and Language Processing (3rd ed., Draft). Stanford University. Retrieved from https://web.stanford.edu/~jurafsky/slp3/

Kaggle. (2023). Recipe Ingredients Dataset. Retrieved from https://www.kaggle.com

Liu, B. (2012). Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers.

Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1–2), 1–135.

Putri, A. S., & Prasetyo, E. (2022). Chatbot berbasis NLP untuk layanan kuliner lokal. Seminar Nasional Teknologi dan Sains Terapan, 6, 221–226.

Rahmawati, D., & Ramadhan, R. (2021). Analisis sentimen komentar pengguna aplikasi masakan dengan metode Naive Bayes. Jurnal Teknologi dan Sistem Komputer, 9(3), 112–119.

Ricci, F., Rokach, L., & Shapira, B. (2015). Recommender Systems Handbook (2nd ed.). Springer.

Sugiyono. (2017). Metode Penelitian Kuantitatif, Kualitatif, dan R&D. Bandung: Alfabeta.

Tan, P. N., Steinbach, M., & Kumar, V. (2018). Introduction to Data Mining (2nd ed.). Pearson.

Wahyudi, R. (2020). Pengembangan sistem rekomendasi resep makanan menggunakan algoritma collaborative filtering. Jurnal Teknologi Informasi dan Ilmu Komputer, 7(2), 231–239.

Zhang, L., Wang, S., & Liu, B. (2018). Deep learning for sentiment analysis: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4), e1253.

Downloads

Published

2025-03-30

How to Cite

Sarwendra Sarwendra, Krisna Pujanthi, Reva Audia Manurung, & Mulyadi Mulyadi. (2025). Cookgenix.AI: Sistem Rekomendasi Resep Masakan Berbasis Bahan dan Preferensi Pengguna Menggunakan Metode Collaborative Filtering dan FP-Growt. Jurnal Ilmiah Teknik Informatika Dan Komunikasi, 5(1), 446–458. https://doi.org/10.55606/juitik.v5i1.1327

Similar Articles

1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.