Aplikasi Penjadwalan Daftar Jaga Perawat Dengan Menerapkan Algoritma Genetika
(Studi Kasus RSIA Muhammadiyah Probolinggo)
DOI:
https://doi.org/10.55606/juitik.v5i2.1126Keywords:
CodeIgniter, Genetic Algorithm, Nurse SchedulingAbstract
A web-based nurse scheduling application utilizing a genetic algorithm is designed to optimize the arrangement of nurses’ work schedules in hospitals, which is often a challenge due to the need to consider various critical factors. The purpose of developing this application is to assist head nurses in efficiently creating nurse work schedules, while considering shift distribution, weekly working hour limits, provision of two days off per week, and the prohibition of assigning a night shift followed directly by a morning shift to ensure sufficient rest for nurses. This application is built using the CodeIgniter 3 framework, PHP programming language, and MySQL database. By leveraging the genetic algorithm, the system can automatically find the best schedule combinations and reduce violations of nurse scheduling rules. Test results show that the application can automatically generate schedules that comply with hospital regulations and requirements, and significantly accelerate the scheduling process compared to manual methods. Furthermore, the fitness value and schedule generation time produced are influenced by parameters such as population size, number of generations, mutation rate, and tournament size used.
References
Amini, N., Saragih, T. H., Faisal, M. R., Farmadi, A., & Abadi, F. (2022). Implementasi Algoritma Genetika Untuk Seleksi Fitur Pada Klasifikasi Genre Musik Menggunakan Metode Random Forest. Jurnal Informatika Polinema, 9(1), 75–82. https://doi.org/10.33795/jip.v9i1.1028
Audry Febrisa Sidabutar, R. H. (2023). Sistem Optimasi Penjadwalan dan Biaya Transportasi Pengiriman Barang (W. Isti rahayu (ed.)). Penerbit Buku Pedia.
Cia, N. A. (2024). Implementasi Algoritma Genetika Dalam Rekomendasi Makanan Untuk Penderita Obesitas. Jurnal Informatika Dan Teknik Elektro Terapan, 12(2), 819–828. https://doi.org/10.23960/jitet.v12i2.3993
Eriana, E. S., & Zein, D. A. (2023). Artificial Intelligence. In Angewandte Chemie International Edition: Vol. 6(11).
Fajrin, A. M. (2021). Analisis Performa Dari One-Point, Multi-Point Dan Order Crossover Di Algoritma Genetika. SemanTIK, 7(2), 175. https://doi.org/10.55679/semantik.v7i2.20863
Feronica, E., Nasution, Y. N., & Purnamasari, I. (2022). Optimasi Algoritma Naïve Bayes Menggunakan Algoritma Genetika Untuk Memprediksi Kelulusan. Eksponensial, 13(2), 147. https://doi.org/10.30872/eksponensial.v13i2.1057
Lowryk O. Lahunduitan, James U.L Mangobi, & Vivian E. Regar. (2022). Optimasi Penjadwalan Perawat Di Ruang Ugd Rsud Lapangan Sawang Menggunakan Metode Non-Preemptive Goal Programming. Discovery : Jurnal Ilmu Pengetahuan, 7(2), 44–49. https://doi.org/10.33752/discovery.v7i2.3410
Priatna, W., Warta, J., & Sulistiyo, D. (2023). Implementasi Algoritma Genetika untuk Aplikasi Penjadwalan Sistem Kerja Shift. Techno.Com, 22(1), 235–246. https://doi.org/10.33633/tc.v22i1.7049
Pulu, I. H., Pekuwali, A. A., & Talakua, A. C. (2023). Penerapan Algoritme Genetika Penjadwalan Perawat di Rumah Sakit Umum Imanuel Sumba. Contar: Journal of Computer Science, 1(1), 01–05.
Ramdania, D. R., Irfan, M., Alfarisi, F., & Nuraiman, D. (2019). Comparison of genetic algorithms and Particle Swarm Optimization (PSO) algorithms in course scheduling. Journal of Physics: Conference Series, 1402(2), 0–7. https://doi.org/10.1088/1742-6596/1402/2/022079
Salman, R., Suprapto, & Irfandi. (2023). Analisis Pengaruh Probabilitas Crossover Terhadap Kinerja Algoritma Genetika Dalam Optimasi Penjadwalan Matakuliah. Jurnal Teknoif Teknik Informatika Institut Teknologi Padang, 11(2), 69–74. https://doi.org/10.21063/jtif.2023.v11.2.69-74
Setyawan, R. D., Setyawan, B., Julianda, A., Alfarizi, M., Lutfiana Mahpud, H., & Dina Kalifia, A. (2025). ANALISIS PENJADWALAN BELANJA BULANAN KEBUTUHAN KELUARGA MENGGUNAKAN ALGORITMAGENETIKA. 3, 354–361.
Supriana, I. W., Raharja, M. A., Bimantara, I. M. S., & Bramantya, D. (2021). Implementasi Dua Model Crossover Pada Algoritma Genetika Untuk Optimasi Penggunaan Ruang Perkuliahan. Jurnal RESISTOR (Rekayasa Sistem Komputer), 4(2), 167–177. https://doi.org/10.31598/jurnalresistor.v4i2.758
Syakina, L., Bakhtiar, T., Hanum, F., & Supriyo, P. T. (2023). Penentuan Rute Distribusi Rastra Menggunakan Algoritma Genetika. MILANG Journal of Mathematics and Its Applications, 19(2), 97–115. https://doi.org/10.29244/milang.19.2.97-115
Triyono, & Kusrini. (2024). Algoritma Genetika dalam Penjadwalan Mata Kuliah: Eksplorasi Metode Crossover, Mutasi, dan Seleksi Terbaik. Jurnal Ilmiah Dan Teknologi Informasi Dan Komunikasi, 17, 126–153.
Wiratna, Ryan Eka,Nurlaili, A. L., & Rizki, A. M. (2023). Pembuatan Aplikasi Penjadwalan Mata Kuliah Menggunakan Algoritma Genetika. Jurnal Teknologi Dan Manajemen, 4(1), 13–20. https://doi.org/10.31284/j.jtm.2023.v4i1.3990
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Ilmiah Teknik Informatika dan Komunikasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.