Analisis Klasterisasi Kualitas Udara Menggunakan Algoritma Fuzzy C-Means Berdasarkan Parameter NO2 dan SO2 di Provinsi Aceh

Authors

  • Muhammad Alfathan Harriz Universitas Matana
  • Harlis Setiyowati Universitas Budi Luhur
  • Edi Junaedi Universitas Cendekia Abditama

DOI:

https://doi.org/10.55606/juitik.v5i2.1083

Keywords:

Air quality, Clustering, Fuzzy C-Means, Nitrogen dioxide, Province of Aceh

Abstract

The degradation of air quality in Indonesia, particularly in Aceh Province, requires advanced analytical approaches to capture the complexities of air pollution patterns. This study aims to apply the Fuzzy C-Means (FCM) algorithm to cluster regions based on NO2 and SO2 concentrations and to determine the optimal cluster configuration. Air quality index data from 2023–2024, totaling 365 entries, were analyzed using FCM with a fuzzifier parameter of m = 2.0. Performance evaluation was conducted using the Fuzzy Partition Coefficient, Silhouette Score, and Davies-Bouldin Index. The analysis produced two optimal clusters with an FPC of 1.00. Cluster 1 (228 entries) showed an average NO2 concentration of 4.68 μg/m³ and SO2 of 7.10 μg/m³. Cluster 2 (137 entries) exhibited NO2 at 8.74 μg/m³ and SO2 at 6.18 μg/m³. Cross-validation demonstrated consistency in distribution between the training data [0.63; 0.37] and testing data [0.6; 0.4]. FCM proved effective in identifying spatial patterns of air quality with high accuracy, providing a scientific basis for the development of targeted air pollution control policies in Aceh Province.

References

A. Singh & K. K. Singh. (2022). An Overview of the Environmental and Health Consequences of Air Pollution. 13(3), 231–237. https://doi.org/10.5829/ijee.2022.13.03.03

Bai, Y., Jin, X., Wang, X., Wang, X., & Xu, J. (2020). Dynamic Correlation Analysis Method of Air Pollutants in Spatio-Temporal Analysis. International Journal of Environmental Research and Public Health, 17(1). https://doi.org/10.3390/ijerph17010360

Bobylev, S. N., Solovyeva, S. V., & Astapkovich, M. (2022). Air Quality as a Priority Issue for the New Economy. The World of New Economy, 16(2), 76–88. https://doi.org/10.26794/2220-6469-2022-16-2-76-88

Danny Manongga, Untung Rahardja, Irwan Sembiring, Qurotul Aini, & Po Abas Sunarya. (2024). Improving performance of air quality monitoring: A qualitative data analysis. IAES International Journal of Artificial Intelligence, 13(4), 3793–3793. https://doi.org/10.11591/ijai.v13.i4.pp3793-3807

Grace, R. K., Aishvarya S., K., Monisha, B., & Kaarthik, A. (2020). Analysis and Visualization of Air Quality Using Real Time Pollutant Data. 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), 34–38. https://doi.org/10.1109/ICACCS48705.2020.9074283

Gupta, A., Datta, S., & Das, S. (2021). Fuzzy Clustering to Identify Clusters at Different Levels of Fuzziness: An Evolutionary Multiobjective Optimization Approach. IEEE Transactions on Cybernetics, 51(5), 2601–2611. https://doi.org/10.1109/TCYB.2019.2907002

Hamedian, A. A., Javid, A., Motesaddi Zarandi, S., Rashidi, Y., & Majlesi, M. (2016). Air Quality Analysis by Using Fuzzy Inference System and Fuzzy C-mean Clustering in Tehran, Iran from 2009-2013. Iran J Public Health, 45(7), 917–925.

Jing Wei, Zhanqing Li, Jun Wang, Can Li, Pawan Gupta, & Maureen Cribb. (2023). Ground-level gaseous pollutants (NO2, SO2, and CO) in China: Daily seamless mapping and spatiotemporal variations. Atmospheric Chemistry and Physics, 23(2), 1511–1532. https://doi.org/10.5194/acp-23-1511-2023

Kodipalli, A., Fernandes, S. L., Dasar, S. K., & Ismail, T. (2023). Computational Framework of Inverted Fuzzy C-Means and Quantum Convolutional Neural Network Towards Accurate Detection of Ovarian Tumors. International Journal of E-Health and Medical Communications (IJEHMC), 14(1), 1–16. https://doi.org/10.4018/IJEHMC.321149

Martino, F. D., & Sessa, S. (2020). A New Validity Index Based on Fuzzy Energy and Fuzzy Entropy Measures in Fuzzy Clustering Problems. Entropy, 22(11). https://doi.org/10.3390/e22111200

Masoero, L., Thomas, E., Parmigiani, G., Tyekucheva, S., & Trippa, L. (2023). Cross-Study Replicability in Cluster Analysis. Statistical Science, 38(2), 303–316. https://doi.org/10.1214/22-STS871

Mohammad Ifran Sanni, Reza Dani Pramudya, Hery Hery, Dieng Asep Jamaludin, Sondang Visiana Sihotang, & Ihsan Nuril Hikam. (2024). Integrating Technology and Environmental Policy for Effective Air Quality Monitoring in Indonesia. 1–6. https://doi.org/10.1109/iccit62134.2024.10701111

Muhammad Rendana, Wan Mohd Razi Idris, & S. Abdul Rahim. (2022). Clustering analysis of PM2.5 concentrations in the South Sumatra Province, Indonesia, using the Merra-2 Satellite Application and Hierarchical Cluster Method. AIMS Environmental Science, 9(6), 754–770. https://doi.org/10.3934/environsci.2022043

Pai, S. J., Carter, T. S., Heald, C. L., & Kroll, J. H. (2022). Updated World Health Organization Air Quality Guidelines Highlight the Importance of Non-anthropogenic PM2.5. Environmental Science & Technology Letters, 9(6), 501–506. https://doi.org/10.1021/acs.estlett.2c00203

Pun, V., Mehta, S., Kusuma, R., & Kass, D. (2021). A phased city air quality management approach for faster clean air progress. European Journal of Public Health, 31(Supplement_3), ckab164.768. https://doi.org/10.1093/eurpub/ckab164.768

S. Rubin Bose, P. R. C. Rahul, M. Nishanth, A. Melva, R. Regin, & R. Sivakani. (2024). Environmental Data Analysis for Air Quality Monitoring and Control. Advances in Computational Intelligence and Robotics Book Series, 289–316. https://doi.org/10.4018/979-8-3693-8659-0.ch015

Sarah E. Benish, Jesse O. Bash, Kristen M. Foley, K. Wyat Appel, Christian Hogrefe, Robert C. Gilliam, & George Pouliot. (2022). Long-term regional trends of nitrogen and sulfur deposition in the United States from 2002 to 2017. Atmospheric Chemistry and Physics, 22(19), 12749–12767. https://doi.org/10.5194/acp-22-12749-2022

Singh, G., Swarnkar, A., Gupta, N., & Niazi, K. R. (2022). Outlier Detection and Clustering of household’s Electrical Load Profiles. In A. Tripathi, A. Soni, A. Shrivastava, A. Swarnkar, & J. Sahariya (Eds.), Intelligent Computing Techniques for Smart Energy Systems (pp. 609–620). Springer Nature Singapore.

Situmorang, M. H. S., Nasution, B. I., Aminanto, M. E., Nugraha, Y., & Kanggrawan, J. I. (2023). Air Pollution Index (API) Analysis at Jakarta in 2019-2020 using Fuzzy C-Means and Gaussian Mixture Model. Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications, 174–178. https://doi.org/10.1145/3575882.3575916

Song, B. (2022). Application of Fuzzy Clustering Model in the Classification of Sports Training Movements. Computational Intelligence and Neuroscience, 2022(1), 4308283. https://doi.org/10.1155/2022/4308283

Sumarauw, S. J. A. (2022). Fuzzy c-Means Clustering untuk Pengenalan Pola Studi kasus Data Saham. Jurnal Axioma, 7(2), 97–106. https://doi.org/10.56013/axi.v7i2.1395

Sunarno Sunarno, Priyo Purwanto, & Bruyi Rohman Warsito. (2022). Analysis of Indonesia’s Three Major Anthropogenic Pollutants Which Include Various Emission and Fuel Sectors in the 1990-2015 Period. Jurnal Pendidikan IPA Indonesia, 11(2), 260–270. https://doi.org/10.15294/jpii.v11i2.33224

Utami, I., Suryaningrum, F., & Ispriyanti, D. (2023). K-MEANS CLUSTER COUNT OPTIMIZATION WITH SILHOUETTE INDEX VALIDATION AND DAVIES BOULDIN INDEX (CASE STUDY: COVERAGE OF PREGNANT WOMEN, CHILDBIRTH, AND POSTPARTUM HEALTH SERVICES IN INDONESIA IN 2020). BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 17(2), 0707–0716. https://doi.org/10.30598/barekengvol17iss2pp0707-0716

Wu, K.-L. (2012). Analysis of parameter selections for fuzzy c-means. Pattern Recognition, 45(1), 407–415. https://doi.org/10.1016/j.patcog.2011.07.012

Wu, R., Zorn, S. R., Kang, S., Kiendler-Scharr, A., Wahner, A., & Mentel, T. F. (2024). Application of fuzzy c-means clustering for analysis of chemical ionization mass spectra: Insights into the gas phase chemistry of NO₃-initiated oxidation of isoprene. Atmospheric Measurement Techniques, 17(6), 1811–1835. https://doi.org/10.5194/amt-17-1811-2024

Xiaoteng Zhou, Vladimir Strezov, Yijiao Jiang, Tao Kan, & Tim Evans. (2022). Temporal and spatial variations of air pollution across China from 2015 to 2018. Journal of Environmental Sciences-China, 112, 161–169. https://doi.org/10.1016/J.JES.2021.04.025

Zaki, M., Mahidin, Mariana, Gani, A., Nasir, M., Irham, M., Erdiwansyah, Ichwana, Aufa, S., & Nasrullah. (2024). Analysis of Air, Water and Noise Level Quality Due to Industrials Activities in Aceh Province. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 79(1), 54–62.

Zhao, K., Dai, Y., Jia, Z., & Ji, Y. (2022). General Fuzzy C-Means Clustering Strategy: Using Objective Function to Control Fuzziness of Clustering Results. IEEE Transactions on Fuzzy Systems, 30(9), 3601–3616. https://doi.org/10.1109/TFUZZ.2021.3119240

Zhuoru Chen, Ningrui Liu, Hao Tang, Xuehuan Gao, Yinping Zhang, Haidong Kan, Furong Deng, Bin Zhao, Xiangang Zeng, Yuexia Sun, Hua Qian, Wei Liu, Jinhan Mo, Xiaohong Zheng, Zhen Huang, Chanjuan Sun, & Zhuohui Zhao. (2022). Health effects of exposure to sulfur dioxide, nitrogen dioxide, ozone, and carbon monoxide between 1980 and 2019: A systematic review and meta-analysis. Indoor Air, 32 11(11), e13170–e13170. https://doi.org/10.1111/ina.13170

Downloads

Published

2025-05-28

How to Cite

Muhammad Alfathan Harriz, Harlis Setiyowati, & Edi Junaedi. (2025). Analisis Klasterisasi Kualitas Udara Menggunakan Algoritma Fuzzy C-Means Berdasarkan Parameter NO2 dan SO2 di Provinsi Aceh. Jurnal Ilmiah Teknik Informatika Dan Komunikasi, 5(2), 350–363. https://doi.org/10.55606/juitik.v5i2.1083

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.