Implementation Of The K-Means Clustering Algorithm For Grouping Heart Disease Risk Levels
DOI:
https://doi.org/10.55606/juisik.v3i3.677Keywords:
K-Means Algorithm, Clusters, Data Mining, Heart Disease.Abstract
Heart disease is a condition where the heart cannot carry out its duties properly, this disease occurs when blood to the heart muscle stops or becomes blocked, causing serious damage to the heart. The KMeans algorithm can be used to cluster heart disease groups to find out if someone is affected heart disease or not. The clustering method with the k-means algorithm in this research shows a new insight, namely grouping the risk level of heart disease based on 3 clusters. Cluster 1 is a category age with a fairly low risk level for heart disease or Low, namely 355 out of 1025 age categories tested, then cluster 2 is the age category with a moderate risk level for heart disease, namely 208 out of 1025 age categories tested, and finally cluster 3 is an age category with a fairly high age category level or High, namely 462 of 1025 age categories tested.
References
Hidayati, S.N. (2016). Pengaruh Pendekatan Keras dan Lunak Pemimpin Organisasi terhadap Kepuasan Kerja dan Potensi Mogok Kerja Karyawan. Jurnal Maksipreneur: Manajemen, Koperasi, dan Entrepreneurship, 5(2), 57-66. http://dx.doi.org/10.30588/SOSHUMDIK.v5i2.164.
Risdwiyanto, A. & Kurniyati, Y. (2015). Strategi Pemasaran Perguruan Tinggi Swasta di Kabupaten Sleman Yogyakarta Berbasis Rangsangan Pemasaran. Jurnal Maksipreneur: Manajemen, Koperasi, dan Entrepreneurship, 5(1), 1-23. http://dx.doi.org/10.30588/SOSHUMDIK.v5i1.142.
Bator, R. J., Bryan, A. D., & Schultz, P. W. (2011). Who Gives a Hoot?: Intercept Surveys of Litterers and Disposers. Environment and Behavior, 43(3), 295–315. https://doi.org/10.1177/0013916509356884.
Febby Olivia, L., Abdi Juliantho, D., & Hendrik, B. (2023). Komprasi Perbandingan Algoritma K-Means dan K-Medoids Dalam Clustering Penyebaran Kasus Covid 19. 1(2), 30–32. https://doi.org/10.31849/digitalzone.v12i1.6572ICCS
Haryadi, D., & Marini Umi Atmaja, D. (n.d.). Penerapan Algoritma K-Means Clustering Untuk Pengelompokan Tingkat Risiko Penyakit Jantung. DES 2021 Journal of Informatics and Communications Technology, 3(2), 51–066.
Indhira, S., & Hendrik, B. (2023). Penerapan Algoritma Decession Tree C4.5 Untuk Diagnosa Penyakit ISPA Pada Puskesmas Sabak Auh. 1(2), 6–9.
Julianto, D. A., Febby Olivia, L., & Hendrik, B. (2023). PREDIKSI VOLATILITAS HARGA JUAL PRODUK PADA E-COMMERCE UNTUK INDEPENDENT STOCKASHTIC DATA. In Jurnal Sains Informatika Terapan (JSIT) E-ISSN (Vol. 2, Issue 2). Bulan Juni.
Romli, I. (2021). PENERAPAN DATA MINING MENGGUNAKAN ALGORITMA K-MEANS UNTUK KLASIFIKASI PENYAKIT ISPA. Indonesian Journal of Business Intelligence (IJUBI), 4(1), 10. https://doi.org/10.21927/ijubi.v4i1.1727
Norsyaheera, A.W., Lailatul, F.A.H., Shahid, S.A.M., & Maon, S.N. (2016). The Relationship Between Marketing Mix and Customer Loyalty in Hijab Industry: The Mediating Effect of Customer Satisfaction. In Procedia Economics and Finance (Vol. 37, pp. 366–371). Elsevier B.V. https://doi.org/10.1016/S2212-5671(16)30138-1.
Armand, F. (2003). Social Marketing Models for Product-Based Reproductive Health Programs: A Comparative Analysis. Occasional Paper Series. Washington, DC. Retrieved from www.cmsproject.com.
Belair, A. R. (2003). Shopping for Your Self: When Marketing becomes a Social Problem. Dissertation. Concordia University, Montreal, Quebec, Canada.
Lindawati (2015). Analisis Faktor yang Mempengaruhi Perilaku Ekonomi dan Kesejahteraan Rumah Tangga Petani Usahatani Terpadu Padi-Sapi di Provinsi Jawa Barat. Institut Pertanian Bogor. Retrieved from http://repository.ipb.ac.id/ handle/123456789/85350.
Kotler, P., & Lee, N. R. (2009). Up and Out of Poverty: The Social Marketing Solution. New Jersey: Pearson Education, Inc.
LPPSP. (2016). Statistik Indonesia 2016. Badan Pusat Statistik, 676. Jakarta. Diakses dari https://www.LPPSP.go.id/index.php/publikasi/326.
Risdwiyanto, A. (2016). Tas Kresek Berbayar, Ubah Perilaku Belanja? Kedaulatan Rakyat, 22 Februari, 12.
Chain, P. (1997). Same or Different?: A Comparison of the Beliefs Australian and Chinese University Students Hold about Learning’s Proceedings of AARE Conference. Swinburne University. Available at: http://www. swin.edu.au/aare/ 97pap/CHAN97058.html, diakses tanggal 27 Mei 2000.
StatSoft, Inc. (1997). Electronic Statistic Textbook. Tulsa OK., StatSoft Online. Available at: http://www.statsoft.com/textbook/stathome.html, diak
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Jurnal ilmiah Sistem Informasi dan Ilmu Komputer
This work is licensed under a Creative Commons Attribution 4.0 International License.