PENGELOMPOKAN DAERAH BENCANA ALAM MENGGUNAKAN ALGORITMA K-MEANS CLUSTERING
DOI:
https://doi.org/10.55606/juisik.v3i1.417Keywords:
Data Mining, Natural Disasters, K-Means, ClusteringAbstract
Natural disasters are events that significantly affect the human population. Landslides, earthquakes, floods, fires, droughts, earthquakes and other natural disasters often occur in West Java Province. Information and technology skills are developing quite fast nowadays. Thanks to modern technology, anyone can access and obtain information without restrictions. Information is very important for every aspect of life. One of them is information about natural disasters, because disaster management needs this kind of information. Data mining is a popular method for analyzing disaster data because it is considered a potential answer to disaster management challenges. Therefore, this study discusses the grouping of natural disaster areas for prediction of natural disaster areas in West Java with data mining techniques using the k-means clustering algorithm. The results of the study obtained 3 clusters including low clusters, medium clusters, and high clusters. The selected research source comes from the official website, namely West Java Open Data. The results of this research are expected to provide useful information in determining solutions to natural disaster management problems
References
Asroni, A., Fitri, H., & Prasetyo, E. (2018). Penerapan Metode Clustering dengan Algoritma K-Means pada Pengelompokkan Data Calon Mahasiswa Baru di Universitas Muhammadiyah Yogyakarta (Studi Kasus: Fakultas Kedokteran dan Ilmu Kesehatan, dan Fakultas Ilmu Sosial dan Ilmu Politik). Semesta Teknika, 21(1), 60–64. https://doi.org/10.18196/st.211211
Dhuhita, W. (2015). Clustering Menggunakan Metode K-Mean Untuk Menentukan Status Gizi Balita. Jurnal Informatika Darmajaya, 15(2), 160–174.
Fatmawati, K., & Windarto, A. P. (2018). Data Mining: Penerapan Rapidminer Dengan K-Means Cluster Pada Daerah Terjangkit Demam Berdarah Dengue (Dbd) Berdasarkan Provinsi. Computer Engineering, Science and System Journal, 3(2), 173. https://doi.org/10.24114/cess.v3i2.9661
Firman, M., Halik, A., & Septiana, L. (2022). Analisa Data Untuk Prediksi Daerah Rawan Bencana Alam Di Jawa Barat Menggunakan Algoritma K-Means Clustering. 6(4), 856–870. https://doi.org/10.52362/jisamar.v6i4.939
Iqbal Ramadhan, M. (2017). Penerapan Data Mining Untuk Analisis Data Bencana Milik Bnpb Menggunakan Algoritma K-Means Dan Linear Regression. Jurnal Informatika Dan Komputer, 22(1), 57–65.
Mohede, R. M., Rotinsulu, D. C., Tumangkang, S. Y. L., Pembangunan, J. E., Ekonomi, F., & Ratulangi, U. S. (2020). Analisis Kontribusi Serta Prediksi Pajak Dan Daerah Terhadap Peningkatan Pendapatan Asli Daerah (Pad) Di Kabupaten Kepulauan Sangihe. Jurnal Berkala Ilmiah Efisiensi, 20(01), 45–54.
Murdiaty, M., Angela, A., & Sylvia, C. (2020). Pengelompokkan Data Bencana Alam Berdasarkan Wilayah, Waktu, Jumlah Korban dan Kerusakan Fasilitas Dengan Algoritma K-Means. Jurnal Media Informatika Budidarma, 4(3), 744. https://doi.org/10.30865/mib.v4i3.2213
Puji Rahayu, Ika Anikah, Dias Bayu Saputra, Tri Anelia, & Martanto. (2020). Penerapan Data Mining Metode K-Means Clustering Untuk Analisa Penjualan Rotan. KOPERTIP : Jurnal Ilmiah Manajemen Informatika Dan Komputer, 4(2), 42–50. https://doi.org/10.32485/kopertip.v4i2.118
Putu, N., Merliana, E., & Santoso, A. J. (n.d.). Analisa Penentuan Jumlah Cluster Terbaik pada Metode K-Means. 978–979.
Ramdhan, D., Dwilestari, G., Dana, R. D., Ajiz, A., & Kaslani, K. (2022). Clustering Data Persediaan Barang Dengan Menggunakan Metode K-Means. MEANS (Media Informasi Analisa Dan Sistem), 7(1), 1–9. https://doi.org/10.54367/means.v7i1.1826
Surya, A. D., M.Sapriyaldi, Wanto, A., Windarto, A. P., & Damanik, I. S. (2021). Komparasi Algoritma Machine Learning untuk Penentuan Performance Terbaik Pada Prediksi Produksi Tanaman Jahe di Indonesia. Seminar Nasional Ilmu Sosial Dan Teknologi (SANISTEK), 276–284.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Jurnal ilmiah Sistem Informasi dan Ilmu Komputer
This work is licensed under a Creative Commons Attribution 4.0 International License.