KLASIFIKASI INDEKS PEMBANGUNAN MANUSIA DI INDONESIA TAHUN 2022 DENGAN SUPPORT VECTOR MACHINE

Authors

  • Canggih Ajika Pamungkas Politeknik Indonusa Surakarta
  • Wahyu Wijaya Widiyanto Politeknik Indonusa Surakarta

DOI:

https://doi.org/10.55606/juisik.v3i1.407

Keywords:

classification, accuracy, support vector machine (SVM), confusion matrix

Abstract

The success of national development apart from being seen from the high rate of economic growth, the most important thing is the success in the aspect of human development. The Human Development Index is a measure used to monitor and evaluate human development. The purpose of this study is to measure the classification accuracy of the Human Development Index in Indonesia in 2022 with the Support Vector Machine (SVM) and a performance measurement tool for classification problems, namely the Confusion Matrix. Based on the research results, it can be obtained that the percentage accuracy of the classification of the Human Development Index in Indonesia in 2022 with the Support Vector Machine (SVM) is not directly proportional to the increase in the amount of training data, this conclusion implies that it is necessary to consider scientifically in determining the ratio of testing data and training data.

References

Ade, I. A., Pratiwi, S., & Wijayanto, A. W. (n.d.). Klasifikasi Indeks Pembangunan Manusia dengan Metode K-Nearest Neighbor dan Support Vector Machine di Pulau Jawa.

Chitra Jalota, & Rashmi Agrawal. (2018). Analysis of Educational Data Mining using Classification. Proceeding of the 2018 International Conference on Wavelet Analysis and Pattern Recognition.

Fauzi, F. (2017). K-Nearset Neighbor (K-NN) dan Support Vector Machine (SVM) untuk Klasifikasi Indeks Pembangunan Manusia Provinsi Jawa Tengah Info Artikel. Jurnal MIPA, 40(2). http://journal.unnes.ac.id/nju/index.php/JM

Fourina Ayu Novianti, & Santi Wulan Purnami. (2012). Analisis Diagnosis Pasien Kanker Payudara Menggunakan Regresi Logistik dan Support Vector Machine (SVM) Berdasarkan Hasil Mamografi. Jurnal Sains Dan Seni ITS, 1(1), 147–152.

Markoulidakis, I., Kopsiaftis, G., Rallis, I., & Georgoulas, I. (2021). Multi-Class Confusion Matrix Reduction method and its application on Net Promoter Score classification problem. ACM International Conference Proceeding Series, 412–419. https://doi.org/10.1145/3453892.3461323

Octaviani, P. A., Wilandari, Y., & Ispriyanti, D. (2014). PENERAPAN METODE KLASIFIKASI SUPPORT VECTOR MACHINE (SVM) PADA DATA AKREDITASI SEKOLAH DASAR (SD) DI KABUPATEN MAGELANG. 3(4), 811–820. http://ejournal-s1.undip.ac.id/index.php/gaussian

Tomar, G., Birla Institute of Applied Sciences, Institute of Electrical and Electronics Engineers. Bombay Section. Madhya Pradesh Subsection, Technical Education Quality Improvement Programme (India). Phase-III., IEEE Computer Society, & Institute of Electrical and Electronics Engineers. (n.d.). 2020 12th International Conference on Computational Intelligence and Comunication Networks: proceedings: venue, Birla Institute of Applied Sciences, Bhimtal, Distt. Nainital, Uttarakhand, India.

Xu, J., Zhang, Y., & Miao, D. (2020). Three-way confusion matrix for classification: A measure driven view. Information Sciences, 507, 772–794. https://doi.org/10.1016/j.ins.2019.06.064

Downloads

Published

2023-02-19

How to Cite

Pamungkas, C. A., & Widiyanto, W. W. (2023). KLASIFIKASI INDEKS PEMBANGUNAN MANUSIA DI INDONESIA TAHUN 2022 DENGAN SUPPORT VECTOR MACHINE. Jurnal Ilmiah Sistem Informasi Dan Ilmu Komputer, 2(3), 139–145. https://doi.org/10.55606/juisik.v3i1.407