Analisis Perbandingan Metode Algoritma C4.5 dan KNN dalam Prediksi Nilai Kebutuhan Gizi Ibu Hamil di Kecamatan Pandaan
DOI:
https://doi.org/10.55606/juisik.v5i2.1171Keywords:
C4.5, K-NN, Nutritional Needs Prediction, Pregnant WomenAbstract
This study aims to compare the performance of the C4.5 algorithm and the K-Nearest Neighbor (KNN) method in predicting the nutritional needs of pregnant women. The research method involves six main stages: field data collection, dataset reading, basic data exploration, data preprocessing, predictive model development, and model evaluation using test data. The dataset was collected through a Google Form distributed to pregnant women in the Pandaan sub-district and then underwent a preprocessing phase to clean and prepare the data for further analysis. The C4.5 and KNN algorithms were built using the preprocessed data, and the complexity of each model was evaluated to determine their prediction accuracy. These methods were used to predict the nutritional requirements of pregnant women. The findings of the study indicate that the C4.5 algorithm achieved a higher accuracy rate of 95%, compared to 87.50% achieved by the KNN algorithm. Based on these results, it can be concluded that the C4.5 algorithm is more accurate and reliable for predicting the nutritional needs of pregnant women.
References
Cahyo, A. E., & Nilogiri, A. (2018). Klasifikasi gangguan autisme pada anak menggunakan algoritma C4.5 dengan teknik random forest. Universitas Muhammadiyah Jember, 49, 2013–2015.
Dewi, A. (2017). Gizi pada ibu hamil. Universitas Muhammadiyah Yogyakarta.
Dinas Kesehatan Kabupaten Pasuruan. (2019). LKjIP Dinas Kesehatan Kabupaten Pasuruan 2019.
Ediyono, S. (2023). Dampak kurangnya nutrisi pada ibu hamil terhadap risiko stunting pada bayi yang dilahirkan. Jurnal Ilmu Keperawatan dan Kebidanan, 14(1).
Fitrianingsih, D., Bettiza, M., & Uperiati, A. (n.d.). Klasifikasi status gizi pada pertumbuhan balita menggunakan K-Nearest Neighbor (KNN).
Handayani, N. S., & Kusumadewi, S. (2020). Sistem informasi monitoring kebutuhan gizi ibu hamil.
Hidayat, M. N. F. (2020). Penentuan gizi anak menggunakan komparasi metode C4.5 dan K-Nearest Neighbor (KNN). Nusantara Journal of Computers and Its Applications, 5(2), 85–93.
Iskandar, D., & Suprapto, Y. K. (2015). Perbandingan akurasi klasifikasi tingkat. Network Engineering Research Operation (NERO), 2(1), 37–43. http://nero.trunojoyo.ac.id/index.php/nero/article/view/42
Kementerian Kesehatan Republik Indonesia. (2021). Kementerian Kesehatan tahun 2020.
Kesehatan Masyarakat Seroja Husada, J., Muzhaffar, H. D., Lipoeto, N. I., Karmia, H. R., Fasrini, U., & Irfandy, D. (n.d.). Hubungan asupan makronutrien dengan kenaikan berat badan pada ibu hamil. Jurnal Kesehatan Masyarakat Seroja Husada, 2(3), 143–168. https://doi.org/10.572349/husada.v1i1.363
Ningtyias, F. W., & Kurrohman, T. (2020). Food taboos and recommended foods for pregnant women: The study of phenomenology in Pendhalungan society. IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/485/1/012149
Prasatya, A., Siregar, R. R. A., & Arianto, R. (2020). Penerapan metode K-Means dan C4.5 untuk prediksi penderita diabetes. PETIR, 13(1), 86–100. https://doi.org/10.33322/petir.v13i1.925
Ragudass, K. A. (2016). Tingkat pengetahuan ibu hamil tentang kebutuhan nutrisi selama kehamilan di RSUP Haji Adam Malik pada tahun 2016. Jurnal Pembangunan Wilayah & Kota, 1(3), 82–91.
Syah, A., Dewata, P., Ibrahim, P. Z., & Agung, H. (2018). Aplikasi data mining berbasis Android menggunakan algoritma K-Means clustering dan algoritma C4.5 untuk memprediksi pengambilan jurusan siswa SMA kelas X pada Sekolah Bunda Mulia. Kalbi Scientia, 5(1), 16–23. http://research.kalbis.ac.id/Research/Files/Article/Full/TOGIPCKHKLRFJ043WZYF615Y9.pdf
Wibowo, A. (2018). Perancangan aplikasi konsultasi ibu hamil berbasis cloud computing. Jurnal Matrik, 17.
Zuhrotud Diana, S., Soekarno, J. H., & Sukolilo, K. (n.d.). Hubungan penambahan berat badan ibu selama hamil dan kepatuhan kunjungan antenatal care (ANC) dengan berat lahir bayi. https://doi.org/10.57213/antigen.v3i2.671
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal ilmiah Sistem Informasi dan Ilmu Komputer

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.