Analisis Sentimen Persepsi Masyarakat pada Media Sosial X Menggunakan Metode K-Means, SVM, dan Teknik Smote
Studi Kasus: Program Makan Bergizi Gratis
DOI:
https://doi.org/10.55606/juisik.v6i1.2071Keywords:
K-Means Clustering, MBG, Sentiment Analysis, SMOTE, SVMAbstract
The Free Nutritious Meal (MBG) Program has emerged as a major public policy issue frequently discussed on social media platform X (Twitter). Public discourse surrounding this program reflects diverse perspectives, including support, criticism, and broader debates on national nutrition policies. This study seeks to identify the dominant topics within these conversations through K-Means clustering and to classify sentiments using the Support Vector Machine (SVM) algorithm, enhanced with SMOTE to address class imbalance. A total of 3,053 tweets were collected through crawling. The clustering results revealed three main themes: (1) nutrition fulfillment and food access for priority groups, highlighted by keywords such as nutrition, milk, fish, toddlers, schools, and pesantren; (2) political dynamics and program legitimacy, represented by terms like stunting, support, president, Prabowo, society, and national; and (3) state financial concerns, reflected in words including tax, funds, state budget, cost, people, and expenditure. In sentiment analysis, SVM without SMOTE produced accuracies of 65.69%, 67.76%, and 68.12% under 90:10, 80:20, and 70:30 split ratios. After applying SMOTE, accuracy increased to 77.94%, 76.38%, and 75.06%, with an F1-Score of 78%. These results confirm that K-Means is effective in identifying discussion topics, while SMOTE enhances SVM performance in sentiment classification.
References
Abdillah, L. A. (2022). Peranan media sosial modern. Bening Media Publishing. https://www.bening-mediapublishing.com
Arsi, P., & Waluyo, R. (2021). Analisis sentimen wacana pemindahan ibu kota Indonesia menggunakan algoritma support vector machine (SVM). Jurnal Teknologi Informasi dan Ilmu Komputer, 8(1), 147–154. https://doi.org/10.25126/jtiik.0813944
Batubara, R. P., Skawanti, J. R., Saleha, S., Ishak, R. P., Sriwulandari, T., Setiawan, A. S., Sari, D. P., & Prayugo, S. (2024). Peluang usaha produk kuliner berbasis puyuh (S. Prayugo, Ed.). Bypass. https://books.google.co.id/books?id=eucjEQAAQBAJ
Dekasari, Y., & Gunawan, T. (2024). Upaya pencegahan stunting pada anak balita di Indonesia: Pengabdian di Kabupaten Pesawaran. JPKM: Jurnal Pengabdian kepada Masyarakat, 2024(2), 129–135. https://journal.danisapublisher.id
Efendi, J., & Lutfianingsih, F. F. (2023). Aspek hukum media sosial: Perdata dan pidana. Kencana.
Jollyta, D., Hajjah, A., Haerani, E., & Siddik, M. (2023). Algoritma klasifikasi untuk pemula: Solusi Python dan RapidMiner. Deepublish. https://books.google.co.id/books?id=y84TEQAAQBAJ
Mada Sanjaya, W. S. (2024). Fisika komputasi berbasis machine learning dengan pemrograman Python. Bolabot.
Paramitha, D. I., Al Farauqi, M. D. A., Tyas, I. K. D., & Universitas Muhammadiyah Kalimantan Timur. (2023). Literasi digital pengguna internet Indonesia guna mewujudkan budaya damai di ruang mayantara. Jurnal Kewarganegaraan, 7(1), 1208–1215. https://journal.upy.ac.id/index.php/pkn/article/view/5308
Permata, A. (2024). Analisis sentimen media sosial: Mengurai opini publik dengan data. Teknologi Pintar, 4(3), 1–19.
Rahmaddeni, S. K. M. K., Wulandari, D. S. K. M. K., Renova, M., Ramadhan, G., & Sari, R. (2024). Machine learning. Serasi Media Teknologi. https://books.google.co.id/books?id=owoOEQAAQBAJ
Rianto, I., & Santosa, I. P. I. (2025). Data preparation untuk machine learning & deep learning (Y. Fransisca A., Ed.). Penerbit Andi. https://books.google.co.id/books?id=Y5U9EQAAQBAJ
Situmorang, W., & Hayati, R. (2023). Media sosial Instagram sebagai bentuk validasi dan representasi diri. Jurnal Sosiologi Nusantara, 9(1), 111–118. https://doi.org/10.33369/jsn.9.1.111-118
Suryana, A. Y. (2024). Optimalisasi pengelolaan informasi di era digital guna menyukseskan pembangunan nasional. Jakarta.
Tarmizi, S. N. (2024). Membentengi anak dari stunting. Kementerian Kesehatan Republik Indonesia. https://sehatnegeriku.kemkes.go.id/baca/mediakom/20240728/4646123
Wiliani, N., Chusna, N. L., & Ramadhan, P. B. (2023). Analisis sentimen terhadap pro kontra aksi unjuk rasa mahasiswa dengan naïve Bayes dan information gain. Penerbit NEM.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Jurnal ilmiah Sistem Informasi dan Ilmu Komputer

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.







