Analisis Sentimen Persepsi Masyarakat pada Media Sosial X Menggunakan Metode K-Means, SVM, dan Teknik Smote

Studi Kasus: Program Makan Bergizi Gratis

Authors

  • Rivana Delfalizanty Universitas Esa Unggul
  • Yulhendri Yulhendri Universitas Esa Unggul

DOI:

https://doi.org/10.55606/juisik.v6i1.2071

Keywords:

K-Means Clustering, MBG, Sentiment Analysis, SMOTE, SVM

Abstract

The Free Nutritious Meal (MBG) Program has emerged as a major public policy issue frequently discussed on social media platform X (Twitter). Public discourse surrounding this program reflects diverse perspectives, including support, criticism, and broader debates on national nutrition policies. This study seeks to identify the dominant topics within these conversations through K-Means clustering and to classify sentiments using the Support Vector Machine (SVM) algorithm, enhanced with SMOTE to address class imbalance. A total of 3,053 tweets were collected through crawling. The clustering results revealed three main themes: (1) nutrition fulfillment and food access for priority groups, highlighted by keywords such as nutrition, milk, fish, toddlers, schools, and pesantren; (2) political dynamics and program legitimacy, represented by terms like stunting, support, president, Prabowo, society, and national; and (3) state financial concerns, reflected in words including tax, funds, state budget, cost, people, and expenditure. In sentiment analysis, SVM without SMOTE produced accuracies of 65.69%, 67.76%, and 68.12% under 90:10, 80:20, and 70:30 split ratios. After applying SMOTE, accuracy increased to 77.94%, 76.38%, and 75.06%, with an F1-Score of 78%. These results confirm that K-Means is effective in identifying discussion topics, while SMOTE enhances SVM performance in sentiment classification.

 

References

Abdillah, L. A. (2022). Peranan media sosial modern. Bening Media Publishing. https://www.bening-mediapublishing.com

Arsi, P., & Waluyo, R. (2021). Analisis sentimen wacana pemindahan ibu kota Indonesia menggunakan algoritma support vector machine (SVM). Jurnal Teknologi Informasi dan Ilmu Komputer, 8(1), 147–154. https://doi.org/10.25126/jtiik.0813944

Batubara, R. P., Skawanti, J. R., Saleha, S., Ishak, R. P., Sriwulandari, T., Setiawan, A. S., Sari, D. P., & Prayugo, S. (2024). Peluang usaha produk kuliner berbasis puyuh (S. Prayugo, Ed.). Bypass. https://books.google.co.id/books?id=eucjEQAAQBAJ

Dekasari, Y., & Gunawan, T. (2024). Upaya pencegahan stunting pada anak balita di Indonesia: Pengabdian di Kabupaten Pesawaran. JPKM: Jurnal Pengabdian kepada Masyarakat, 2024(2), 129–135. https://journal.danisapublisher.id

Efendi, J., & Lutfianingsih, F. F. (2023). Aspek hukum media sosial: Perdata dan pidana. Kencana.

Jollyta, D., Hajjah, A., Haerani, E., & Siddik, M. (2023). Algoritma klasifikasi untuk pemula: Solusi Python dan RapidMiner. Deepublish. https://books.google.co.id/books?id=y84TEQAAQBAJ

Mada Sanjaya, W. S. (2024). Fisika komputasi berbasis machine learning dengan pemrograman Python. Bolabot.

Paramitha, D. I., Al Farauqi, M. D. A., Tyas, I. K. D., & Universitas Muhammadiyah Kalimantan Timur. (2023). Literasi digital pengguna internet Indonesia guna mewujudkan budaya damai di ruang mayantara. Jurnal Kewarganegaraan, 7(1), 1208–1215. https://journal.upy.ac.id/index.php/pkn/article/view/5308

Permata, A. (2024). Analisis sentimen media sosial: Mengurai opini publik dengan data. Teknologi Pintar, 4(3), 1–19.

Rahmaddeni, S. K. M. K., Wulandari, D. S. K. M. K., Renova, M., Ramadhan, G., & Sari, R. (2024). Machine learning. Serasi Media Teknologi. https://books.google.co.id/books?id=owoOEQAAQBAJ

Rianto, I., & Santosa, I. P. I. (2025). Data preparation untuk machine learning & deep learning (Y. Fransisca A., Ed.). Penerbit Andi. https://books.google.co.id/books?id=Y5U9EQAAQBAJ

Situmorang, W., & Hayati, R. (2023). Media sosial Instagram sebagai bentuk validasi dan representasi diri. Jurnal Sosiologi Nusantara, 9(1), 111–118. https://doi.org/10.33369/jsn.9.1.111-118

Suryana, A. Y. (2024). Optimalisasi pengelolaan informasi di era digital guna menyukseskan pembangunan nasional. Jakarta.

Tarmizi, S. N. (2024). Membentengi anak dari stunting. Kementerian Kesehatan Republik Indonesia. https://sehatnegeriku.kemkes.go.id/baca/mediakom/20240728/4646123

Wiliani, N., Chusna, N. L., & Ramadhan, P. B. (2023). Analisis sentimen terhadap pro kontra aksi unjuk rasa mahasiswa dengan naïve Bayes dan information gain. Penerbit NEM.

Downloads

Published

2026-01-30

How to Cite

Rivana Delfalizanty, & Yulhendri Yulhendri. (2026). Analisis Sentimen Persepsi Masyarakat pada Media Sosial X Menggunakan Metode K-Means, SVM, dan Teknik Smote : Studi Kasus: Program Makan Bergizi Gratis. Jurnal Ilmiah Sistem Informasi Dan Ilmu Komputer, 6(1), 150–168. https://doi.org/10.55606/juisik.v6i1.2071

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.