Klasifikasi Tingkat Kemiskinan di Indonesia Menggunakan Naive Bayes dengan RapidMiner

Authors

  • Ahmad Rizki Sya’bani Universitas Bina Sarana Informatika
  • Wahyu Nur Hidayat Universitas Bina Sarana Informatika
  • Mikhael Valliano Benjamin Universitas Bina Sarana Informatika
  • Risca Lusiana Pratiwi Universitas Nusa Mandiri
  • Euis Widanegsih Universitas Bina Sarana Informatika

DOI:

https://doi.org/10.55606/juisik.v5i3.1770

Keywords:

Data Classification, Machine Learning, Naive Bayes, Poverty, RapidMiner

Abstract

Poverty is a multidimensional issue that has a significant impact on social and economic development in Indonesia. Accurate analysis of poverty levels is essential to support government policies in distributing aid and planning targeted development programs. This study aims to classify poverty levels in Indonesia using the Naive Bayes algorithm based on machine learning, assisted by the RapidMiner Studio software. The dataset consists of 155 entries with 12 key attributes reflecting social and economic indicators, such as household expenditure, education level, unemployment rate, and the Human Development Index (HDI). The research follows the CRISP-DM methodology, which includes the stages of business understanding, data understanding, data preparation, modeling, evaluation, and deployment. The modeling results show that the Naive Bayes algorithm achieves an accuracy of 94.19%, with high precision and recall values, indicating consistent model performance in classifying poor and non-poor categories. These findings suggest that the Naive Bayes-based machine learning approach can serve as an effective analytical tool to understand poverty patterns in Indonesia. The implementation of this model is expected to assist the government in making data-driven decisions to improve the effectiveness of poverty alleviation programs.

References

Ahmad, C. F., Suarna, N., & Dwilestari, G. (2023). Klasifikasi data kemiskinan menggunakan metode Naïve Bayes untuk mengetahui tingkat kemiskinan (Studi kasus: Desa Karangasem). Jurnal Informatika dan Teknologi Informasi, 2(2), 203–208. https://doi.org/10.56854/jt.v2i2.190

Aji, P., Rahman, D., Hernawati, E., & Yualinda, S. (2023). Poverty level prediction based on e-commerce data using Naïve Bayes algorithm and similarity-based feature selection. IJAIT, 7(2), 114–126. https://doi.org/10.25124/ijait.v7i02.5374

Amartya, S. (1999). Development as freedom. Oxford University Press.

Badan Pusat Statistik. (2024). Profil kemiskinan di Indonesia Maret 2024. BPS. https://www.bps.go.id

Chairani, A., Hariyanto, F. E., Luh, N., Andini, E., & S, Z. C. (2021). Klasifikasi rumah tangga miskin menggunakan metode Naive Bayes (Studi kasus: Provinsi Papua tahun 2017). Jurnal Sains Matematika dan Statistika, 7(1), 89–95. https://doi.org/10.24014/jsms.v7i1.11924

Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., & Wirth, R. (2000). CRISP-DM 1.0: Step-by-step data mining guide. SPSS Inc.

Han, J., Kamber, M., & Pei, J. (2012). Data mining: Concepts and techniques (3rd ed.). Morgan Kaufmann.

Hidayat, M. F., & Henryka, D. N. (2024). Forecasting poverty ratios in Indonesia: A time series modeling approach. Jurnal EMACS, 6(3), 219–227. https://doi.org/10.21512/emacsjournal.v6i3.11968

Imanda, N., & Nurdin. (2024). Penerapan algoritma Naive Bayes pada klasifikasi penduduk kurang mampu dan mampu di Tanoh Anou Idi Rayeuk. Jurnal Informatika dan Teknik Elektro Terapan, 12(3), 4674–4681. https://doi.org/10.23960/jitet.v12i3S1.5463

Jefri, & Fatah, Z. (2025). Klasifikasi data mining untuk memprediksi kelulusan mahasiswa. Jurnal Ilmiah Multidisiplin Ilmu, 2(1), 29–37. https://doi.org/10.69714/mhjq1v85

Khalik, M. F. M., & Arifin, F. (2023). Klasifikasi indeks kedalaman kemiskinan Provinsi Sulawesi Selatan berbasis Decision Tree, K-Nearest Neighbor, Naive Bayes, Neural Network, dan Random Forest. Jurnal Edukasi dan Penelitian Informatika, 9(2), 282–288.

Kshirsagar, V., & Wells, R. (2017). Household poverty classification in data-scarce environments: A machine learning approach. 31st Conference on Neural Information Processing Systems, 1–17.

Kurniawan, D. (2020). Kemiskinan di Indonesia dan solusinya. Jurnal Indonesia, 1(1), 1–18.

Maharani, C., Ningrum, D. A., Fatmawati, A. E., & Fadilla, A. (2024). Dampak kemiskinan terhadap kualitas pendidikan anak di Indonesia: Rekomendasi kebijakan yang efektif. Journal of Macroeconomics and Social Development, 1(3), 1–10. https://economics.pubmedia.id/index.php/jmsd

Mansur, Y. (2024). Analisis perkembangan penduduk miskin, karakteristik kemiskinan dan kedalaman kemiskinan di Indonesia. Jurnal Ekonomi dan Manajemen Teknologi (EMT), 8(1), 18–31. https://doi.org/10.35870/emt.v8i1.1930

Martinez, R. G., & Cooray, M. (2025). Enhancing poverty targeting with spatial machine learning: An application to Indonesia. Jurnal Econ, 1(1), 1–47.

Mulyani, S., & Pajri, A. E. (2024). Klasifikasi tingkat kemiskinan di Indonesia menggunakan algoritma Naïve Bayes. Journal of Computers Sciences and Informatics, 1(2), 53–57. https://doi.org/10.34304/scientific.v1i2.333

Novianti, D. (2019). Implementasi algoritma Naïve Bayes pada dataset hepatitis menggunakan RapidMiner. Paradigma – Jurnal Komputer dan Informatika, 21(1), 49–54. https://doi.org/10.31294/p.v20i2

Olearo, L., Adda, F. D., Messina, V., Cremaschi, M., Bandini, S., & Gasparini, F. (2023). An artificial intelligence approach to predict multidimensional poverty of older people from unlabelled data. CEUR Workshop Proceedings, 1–15.

Putri, A. K., Fitria, D., & Mukhti, T. O. (2024). Classification of poor households in Padang City using the Naïve Bayes algorithm with Synthetic Minority Oversampling Technique. UNP Journal of Statistics and Data Science, 2(4), 446–452. https://doi.org/10.24036/ujsds/vol2-iss4/241

Tan, P. N., Steinbach, M., & Kumar, V. (2016). Introduction to data mining (2nd ed.). Pearson Education.

Todaro, M. P., & Smith, S. C. (2020). Economic development (13th ed.). Pearson Education.

Wulansari, R. Y., Fadhilah, N., & Huda, M. (2023). Faktor yang mempengaruhi kemiskinan di Indonesia. Journal of Economic, Management, Accounting and Technology, 6(1), 82–95. https://doi.org/10.32500/jematech.v6i1.3928

Downloads

Published

2025-11-26

How to Cite

Ahmad Rizki Sya’bani, Wahyu Nur Hidayat, Mikhael Valliano Benjamin, Risca Lusiana Pratiwi, & Euis Widanegsih. (2025). Klasifikasi Tingkat Kemiskinan di Indonesia Menggunakan Naive Bayes dengan RapidMiner. Jurnal Ilmiah Sistem Informasi Dan Ilmu Komputer, 5(3), 545–557. https://doi.org/10.55606/juisik.v5i3.1770

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.