Klasifikasi Jenis Bunga Iris Menggunakan Algoritma Klasifikasi Tradisional
DOI:
https://doi.org/10.55606/juisik.v5i2.1228Keywords:
Iris Dataset, Klasifikasi, K-Nearest Neighbor, Machine Learning, Naïve BayesAbstract
This study aims to implement and compare the performance of two traditional classification algorithms, namely K-Nearest Neighbor (K-NN) and Naive Bayes to classify Iris flower types. The dataset used is the Iris Dataset which is a classic dataset in machine learning consisting of 150 samples with four features (sepal length, sepal width, petal length, and petal width) and three target classes (Iris Setosa, Iris Versicolor, and Iris Virginica). The research methodology includes data preprocessing, algorithm implementation, model evaluation using accuracy, precision, recall, and F1-score metrics, and comparative performance analysis. The results showed that the K-NN algorithm with k = 3 achieved an accuracy of 96.67%, while Naive Bayes achieved an accuracy of 93.33%. Both algorithms showed good performance in classifying Iris flower types, with K-NN slightly superior in terms of accuracy. This study proves that traditional classification algorithms are still relevant and effective for classification problems with less complex datasets.
References
Annurullah, G. A., Mulya, A., Dermawan, T., Haiban, R. R., Tatamara, A., & Khalifah, H. D. (2024). Analisis perbandingan KNN, SVM, Decision Tree dan Regresi Logistik untuk klasifikasi obesitas multi kelas. KLIK: Kajian Ilmiah Informatika dan Komputer, 5(1), 102–115.
Arhami, M., & Nasir, M. (2020). Data mining: Algoritma dan implementasi. Yogyakarta: Penerbit Andi.
Arifin, T., & Ariesta, D. (2023). Prediksi penyakit ginjal kronis menggunakan algoritma Naive Bayes classifier berbasis particle swarm optimization. Jurnal Tekno Insentif, 17(1), 26–35.
Dinata, R. K., & Hasdyna, N. (2020). Machine learning. Lhokseumawe: Unimal Press.
Fernanda, M., & Fathoni, N. (2022). Perbandingan klasifikasi antara KNN dan Naive Bayes pada penentuan status gunung berapi dengan K-fold cross validation. Jurnal Informatika dan Teknologi, 15(3), 45–58.
Hidayat, R., & Sari, M. (2024). Analisis perbandingan algoritma Naive Bayes dan KNN untuk analisis sentimen ulasan pengguna aplikasi Vidio di Google Play Store. CONTEN: Computer and Network Technology, 4(2), 78–89.
Hikmah, A. B., Susanto, R., & Wahyudi, M. (2024). Algoritma data science. Jakarta: Teknosain.
Pratama, Y., & Sari, D. P. (2023). Analisis performa metode klasifikasi Naïve Bayes classifier pada unbalanced dataset. Indonesian Journal of Data and Science, 4(3), 89–102.
Raharjo, S., & Purnama, I. K. E. (2024). Buku ajar data mining. Surabaya: Airlangga University Press.
Rahman, A., & Putri, S. A. (2024). Klasifikasi kategori berita menggunakan Naive Bayes. In Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi) (Vol. 7, No. 1, pp. 234–242).
Santoso, B., Wijaya, A., & Kurniawan, D. (2021). Algoritma machine learning. Jakarta: Elex Media Komputindo.
Saputro, W. E., Yuana, H., & Puspitasari, W. D. (2024). Perbandingan metode K-Nearest Neighbor (KNN) dan Naive Bayes terhadap analisis sentimen pada pengguna e-wallet aplikasi DANA menggunakan fitur ekstraksi TF-IDF. Jurnal Teknologi Informasi: Jurnal Keilmuan dan Aplikasi Bidang Teknik Informatika, 18(2), 45–58.
Simbolon, H., Turnip, M., & Sitompul, O. S. (2022). The klasifikasi kualitas air menggunakan metode KNN, Naïve Bayes, dan Decision Tree. JATISI (Jurnal Teknik Informatika dan Sistem Informasi), 9(2), 1210–1223.
Susanto, B., & Wijaya, C. (2023). Implementasi algoritma Naïve Bayes classifier dan K-nearest neighbor untuk klasifikasi penyakit ginjal kronik. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 3(2), 156–167.
Wulandari, A., Mulya, A., Dermawan, T., Haiban, R. R., Tatamara, A., & Khalifah, H. D. (2024). Application of artificial neural network, K-nearest neighbor and Naive Bayes algorithms for classification of obesity risk cardiovascular disease. IJATIS: Indonesian Journal of Applied Technology and Innovation Science, 1(1), 9–15.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal ilmiah Sistem Informasi dan Ilmu Komputer

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.