Implementasi Metode Collaborative Filtering Berdasarkan Preferensi Konsumen pada Penjualan Buket (BOUQUET)
DOI:
https://doi.org/10.55606/juisik.v5i2.1469Keywords:
Buket Marketplace, Collaborative Filtering, Consumer Preferences, E-Commerce, Recommendation SystemsAbstract
The development of digital technology has brought significant changes to the e-commerce industry, including the improvement of data-driven services such as product recommendation systems. Marketplace Buket, which provides various types of bouquets online, faces the challenge of understanding consumer preferences to increase customer satisfaction and loyalty. To address this challenge, this study implements the Collaborative Filtering (CF) method as an approach in building a recommendation system capable of analyzing user behavior patterns based on consumer rating data for products. The CF method allows the system to identify user preferences by comparing similarities between consumer behaviors. By utilizing rating data, the system can recommend products that are relevant and in line with the user's interests, even if the user has never viewed or purchased the product before. This study tests the effectiveness of the recommendation system using real-world data and observing the results of recommendations given to specific users. The results show that the system can provide product recommendations with a high level of relevance, such as products I24 and I26 which are at the top of the recommendation list. In addition to providing relevant results, the system is designed with a simple interface for easy use by general users. The findings of this study indicate that the implementation of CF not only improves the quality of the user experience but also contributes to service efficiency and potential sales increases, including in intercity areas. Overall, this research provides an important contribution to the development of data-driven marketing strategies and lays the foundation for the future development of more complex recommendation systems.
References
Alrasyid, A. M. (2024). Pemanfaatan IoT untuk efisiensi energi di lingkungan rumah pintar. Prosiding Seminar Nasional Teknik Informatika dan Komputer (SEMTIK), 2, 245–252. https://doi.org/10.31284/p.semtik.2024-2.6182
Alrasyid, A. M., Diasri, N. R., Ulandari, D., Putra, R., & Unggul, U. E. (2025). Pengaruh teknologi Internet of Things (IoT) terhadap efisiensi energi di smart home. Jurnal Ilmu Sistem dan Manajemen Digital Berbasis Data (JISMDB), 2(3), 223–230. https://doi.org/10.70248/jismdb.v2i3.2209
Amadi, A. S. M. (2023). Pendidikan di era global: Persiapan siswa untuk menghadapi dunia yang semakin kompetitif. Educatio, 17(2), 153–164. https://doi.org/10.29408/edc.v17i2.9439
Anwar, N. R. (2024). Pelatihan pengenalan Artificial Intelligence (AI) untuk meningkatkan kompetensi guru pada transformasi digital. Journal of Smart Community Service (JSCS), 2(1), 28–36.
Febriani, K. (2024). Pemodelan rekomendasi produk menggunakan algoritma Collaborative Filtering. Jurnal Teknologi dan Informasi, 1(5), 1–17. (Judul jurnal disesuaikan, mohon konfirmasi bila ada nama jurnal yang benar)
Firstyananda, H., Wibowo, R., Alfaraih, T. F., Khalfani, I. A., Putri, R. R., & Kunci, K. (2024). Implementasi pengembangan website profil perusahaan CV Langgeng Lestari Jaya dengan menggunakan metode Waterfall berbasis Bootstrap. Jurnal Teknologi Informasi dan Komputer, 3(2), 241–250.
Irawan, A. S. (2024). Perancangan smart home menggunakan Bluetooth pada smartphone Android dan Arduino. Oktal: Jurnal Ilmu Komputer dan Science, 3(8), 2109–2115.
Irvan Manggala, Nurhaeni, I. D. A., & Rahmanto, A. (2023). Implementasi Artificial Intelligence (AI) di bidang digital marketing pada era Revolusi Industri 5.0. Dalam Peluang dan tantangan Indonesia dalam menghadapi megatrend dunia tahun 2045 (hlm. 274–291).
Padang, H. L., Paembonan, S., & Palopo, K. (2024). Rancang bangun website Gereja Protestan Indonesia Luwu (GPIL) To'lemo Kabupaten Luwu. Jurnal Ilmiah Teknologi dan Teknik (JITET), 12(3), Artikel e5398. https://doi.org/10.23960/jitet.v12i3S1.5398
Pakpahan, R. (2021). Analisa pengaruh implementasi artificial. Journal of Information System, Informatics and Computing, 5(2), 506–513. https://doi.org/10.52362/jisicom.v5i1.465
Priowirjanto, E. S., & Munaf, C. R. (2023). Sosialisasi tentang aspek hukum dalam kegiatan bisnis di marketplace pada Sekolah Menengah Kejuruan Negeri 9 Bandung. Jurnal Kajian Budaya dan Humaniora, 5(2), 228–235. https://doi.org/10.61296/jkbh.v5i2.166
Riski, M., & Ropianto, M. (2020). Entity Relationship Diagram & praktik DBMS. Jurnal Ilmu Komputer dan Sistem Informasi, 5(3), 248–253. (Judul jurnal disesuaikan jika tersedia lengkap)
Setiawan, R., Mufarrihah, I., Andriani, A., & Widoyoningrum, S. (2024). Sistem rekomendasi spesifikasi rumah layak huni bagi masyarakat pendatang berpenghasilan rendah menggunakan metode Forward Chaining berbasis web. Jurnal Ilmiah Penelitian Mahasiswa, 2(3), 789–799.
Sobron, M., & Lubis. (2021). Implementasi Artificial Intelligence pada sistem manufaktur terpadu. Seminar Nasional Teknik (SEMNASTEK) UISU, 4(1), 1–7. https://jurnal.uisu.ac.id/index.php/semnastek/article/view/4134
Sonny, S. N. R. (2021). Pengembangan sistem presensi karyawan dengan teknologi GPS berbasis web pada PT BPR Dana Makmur Batam. Jurnal COMASIE, 6(2), 3–10.
Wahyudi, T. (2023). Studi kasus pengembangan dan penggunaan Artificial Intelligence (AI) sebagai penunjang kegiatan masyarakat Indonesia. Indonesian Journal on Software Engineering (IJSE), 9(1), 28–32. https://doi.org/10.31294/ijse.v9i1.15631
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal ilmiah Sistem Informasi dan Ilmu Komputer

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.