Prediksi Krisis Pangan Daerah Berbasis Big Data : Strategi Pemerintah Provinsi dalam Menjamin Ketahanan Pangan

Authors

  • Mohammad Rezza Fahlevvi Institut Pemerintahan Dalam Negeri
  • Ari Apriyansa Institut Pemerintahan Dalam Negeri
  • M.Y Divan Wanimbo Institut Pemerintahan Dalam Negeri
  • Diminaka Tebai Institut Pemerintahan Dalam Negeri
  • Kodrat Alkauzar Alda Institut Pemerintahan Dalam Negeri
  • Joshua Faitri Ick Institut Pemerintahan Dalam Negeri

DOI:

https://doi.org/10.55606/juisik.v5i2.1344

Keywords:

Big Data, Data-Driven Policy, Food Prediction

Abstract

Climate change, distribution disruptions, and global food price volatility have expanded the potential risks of food insecurity at the regional level. Provincial governments can no longer rely on conventional administrative approaches to respond to food system dynamics. Instead, they must develop information systems capable of processing data rapidly, adaptively, and accurately. This study explores how local governments in Indonesia—specifically Central Java and Bangka Belitung—formulate food crisis prediction strategies based on Big Data by integrating agricultural production data, rainfall levels, market prices, and public sentiment analysis. Using a qualitative-descriptive approach through document analysis, this research examines the architecture of data collection systems, the analytical models employed, and the institutional responses generated from data interpretation. The findings show that food insecurity predictions can be carried out more quickly and accurately when governments build a data ecosystem that integrates various information sources into a single, structured processing flow. Strategies such as regional food stock provision, prediction-based logistics distribution, and price interventions in vulnerable areas do not stem from manual reports but from systems that detect early signs of crisis. This study affirms that leveraging Big Data not only modernizes food governance but also shifts the government's orientation from reaction to anticipation, from administration to prediction, and from reporting to evidence-based intervention.

References

Abdullah, D., Susilo, S., Ahmar, A. S., Rusli, R., & Hidayat, R. (2022). The application of K-means clustering for province clustering in Indonesia of the risk of the COVID-19 pandemic based on COVID-19 data. Quality and Quantity, 56(3). https://doi.org/10.1007/s11135-021-01176-w

Azzakiry, M. (2020). Implementasi pola kemitraan PT. BISI Internasional, Tbk dengan petani penangkar benih hortikultura di Kecamatan Pringgarata Kabupaten Lombok Tengah. AGROTEKSOS: Agronomi Teknologi dan Sosial Ekonomi Pertanian, 29(1). https://doi.org/10.29303/agroteksos.v29i1.285

Badan Pangan Nasional. (2022). Perubahan iklim ancam ketahanan pangan, NFA gandeng BMKG integrasikan data pangan, iklim, dan cuaca. https://www.badanpangan.go.id

Badan Pangan Nasional. (2024a). Kuatkan strategi pengendalian inflasi di daerah, Badan Pangan Nasional serukan pentingnya CPPD. https://www.badanpangan.go.id

Badan Pangan Nasional. (2024b). Pertajam data ketahanan pangan, NFA dan BIG kompak saling dukung bantu wujudkan swasembada pangan Indonesia. https://www.badanpangan.go.id

Fahlevvi, M. R., & Tebai, N. G. (2025). Efektivitas implementasi kebijakan pelayanan terpadu satu pintu (PTSP) dalam meningkatkan kualitas layanan publik di Kabupaten Nabire. Jurnal Administrasi Publik, 8(3).

Helmi, F., & Ali, H. (2020). Strategi peningkatan ketahanan pangan dalam menghadapi pandemi COVID-19 di Kota Bukittinggi. Jurnal Benefita, 5(3). https://doi.org/10.22216/jbe.v5i3.5480

Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B., & Heming, J. (2023). K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Information Sciences, 622. https://doi.org/10.1016/j.ins.2022.11.139

Narayana, I. D. G. A. P., & Amri, I. (2023). Penerapan aplikasi pelayanan rakyat online sebagai layanan pengaduan publik di Diskominfo Kota Denpasar Provinsi Bali. Jurnal Terapan Pemerintahan Minangkabau, 3(1). https://doi.org/10.33701/jtpm.v3i1.2814

Pakpahan, C. A., Sugiarto, R., Ramadhani, A. R., Arianto, A. D., Wardana, W. S., Prismarini, R., & Setyaningsih, R. (2023). Pendampingan komunikasi pemasaran digital untuk meningkatkan distribusi hasil pertanian Dusun Petung Magelang Jawa Tengah. Jurnal Abdi Masyarakat Indonesia, 3(6). https://doi.org/10.54082/jamsi.972

Pierre, A. A., Akim, S. A., Semenyo, A. K., & Babiga, B. (2023). Peak electrical energy consumption prediction by ARIMA, LSTM, GRU, ARIMA-LSTM and ARIMA-GRU approaches. Energies, 16(12). https://doi.org/10.3390/en16124739

Rahmadhani, S., Lim, J., & Santikawati, S. (2023). Analisis praktik audit big data environment di Indonesia. SINOMIKA Journal: Publikasi Ilmiah Bidang Ekonomi dan Akuntansi, 1(5). https://doi.org/10.54443/sinomika.v1i5.587

Satria, A., Maulida, R. B., & Safitri, I. (2023). Prediksi hasil panen tanaman pangan Sumatera dengan metode machine learning. Digital Transformation Technology, 3(2), 389–398. https://jurnal.itscience.org

Shoreline, W., Island, B., Belitung, B., Province, I., Danipranata, J., Nurjaya, I. W., Damar, A., Kelautan, T., Perikanan, F., Institut, K., Bogor, P., & Dramaga, R. (2019). Indeks kepekaan lingkungan ekosistem mangrove dengan interpretasi citra digital, studi kasus: Pesisir Barat Pulau Bangka, Provinsi Kepulauan Bangka Belitung. Jurnal Kelautan dan Perikanan Tropis, 9(1).

Worldailmi, E., Azzam, A., & Utami, T. W. (2022). Big data dan pemetaan masalah untuk keberlanjutan kelas khusus olahraga (KKO) di Kota Yogyakarta. Journal of Appropriate Technology for Community Services, 3(2). https://doi.org/10.20885/jattec.vol3.iss2.art1

Yulianto, A. A. (2019). Extract transform load (ETL) process in distributed database academic data warehouse. APTIKOM Journal on Computer Science and Information Technologies, 4(2). https://doi.org/10.11591/aptikom.j.csit.36

Downloads

Published

2025-07-08

How to Cite

Mohammad Rezza Fahlevvi, Ari Apriyansa, M.Y Divan Wanimbo, Diminaka Tebai, Kodrat Alkauzar Alda, & Joshua Faitri Ick. (2025). Prediksi Krisis Pangan Daerah Berbasis Big Data : Strategi Pemerintah Provinsi dalam Menjamin Ketahanan Pangan. Jurnal Ilmiah Sistem Informasi Dan Ilmu Komputer, 5(2), 393–404. https://doi.org/10.55606/juisik.v5i2.1344

Similar Articles

1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)