Penerapan Teknologi Optical Characater Recognition pada Aplikasi Pemindaian Nutrisi di Label Kemasan Makanan

Authors

  • Muhammad Suhairi Politeknik Negeri Bengkalis
  • Elvi Rahmi Politeknik Negeri Bengkalis
  • Eva Kurniawaty Politeknik Negeri Bengkalis

DOI:

https://doi.org/10.55606/juitik.v5i1.1205

Keywords:

Food Packaging, Label Nutrition, Nutritional Scanning Application, Optical Character Recognition, Scanning Technology

Abstract

Many consumers rarely read nutrition labels on food packaging due to difficulty understanding the information. This research develops a mobile application that can scan nutrition labels using OCR (Optical Character Recognition) technology to address this issue. The application was developed using Flutter and RAD methodology. Its main features include nutrition label scanning, health monitoring, and alerts when consumed nutrients exceed recommended limits based on age and health conditions. From testing results, OCR accuracy reached 74% for text detection and 72% for nutritional value identification. The highest accuracy of 90% was achieved under bright lighting conditions with flat labels. However, accuracy dropped dramatically to 47% with curved labels or poor lighting. Other features such as login, user profile, health monitoring, and scanning history all function properly. The developed application is expected to help consumers more easily read and understand nutritional information on food labels. Future development requires enhanced OCR algorithms to detect text more accurately under various lighting conditions and image capture angles.

References

Andreas, Y., Gunadi, K., & Purbowo, A. N. (2020). Implementasi Tesseract OCR untuk Pembuatan Aplikasi Pengenalan Nota pada Android. Jurnal Infra, 8(1), 2–7.

Bangkit, D. A. (2022). Implementasi Named-Entity Recognition dan Optical Character Recognition untuk Aplikasi Pendeteksi Kehalalan Bahan Makanan.

Banu, K., Andreas, D., Anggoro, W., & Setiawan, A. (2023). OCR: Masa Depan Pengenalan Karakter Optik dan Dampaknya pada Kehidupan Modern. Jurnal Teknologi Informasi, 9(2), 147–156. https://doi.org/10.52643/jti.v9i2.3798

Chigali, N., Bobba, S. R., Suvarna Vani, K., & Rajeswari, S. (2020). OCR assisted translator. 2020 7th International Conference on Smart Structures and Systems, ICSSS 2020, July 2020. https://doi.org/10.1109/ICSSS49621.2020.9202034

Hariyanto, D., Sastra, R., & Putri, F. E. (2021). Implementasi Metode Rapid Application Development Pada Sistem Informasi Perpustakaan. jurnal Al-ilmi, 13(1), 110–117.

Heriyanto Tri, Sholva Yus, & Dwi Nyoto Rudy. (2023). Implementasi Optical Character Recognition (OCR) untukVerifikasi Berkas pada Digital Library Program Studi InformatikaUniversitas Tanjungpura. Jurnal Riset Sains dan Teknologi Informatika, 1(1), 26–29. https://doi.org/10.26418/juristi.v1i1.60916

Hussain, H., Khan, K., Farooqui, F., Ali Arain, Q., & Farah Siddiqui, I. (2021). Comparative Study of Android Native and Flutter App Development. https://www.researchgate.net/publication/361208165

Ikrima, I. R., Giriwono, P. E., & Rahayu, W. P. (2023). Pemahaman dan Penerimaan Label Gizi Front of Pack Produk Snack oleh Siswa SMA di Depok. 10(1), 42–53. https://doi.org/10.29244/jmpi.2023.10.1.42

Maemunah, S., & Sjaaf, A. C. (2020). Hubungan Antara Pengetahuan Gizi, Kemampuan Membaca Label Informasi Nilai Gizi, Penggunaan Label Informasi Nilai Gizi Dan Frekuensi Konsumsi Mi Instan Pada Konsumen Jakarta Dan Sekitarnya. Indonesian Journal of Health Development, 2(2), 129–136.

Maulana, M. I., Nishom, M., & Af’idah, D. I. (2022). Pengolahan Citra untuk Identifikasi Pelat Nomor Kendaraan Mobil Menggunakan Metode Haar Cascade dan Optical Character Recognition. Jurnal Bumigora Information Technology (BITe), 4(1), 1–16. https://doi.org/10.30812/bite.v4i1.1952

Mulyanto, A., Susanti, E., Rossi, F., Wajiran, W., & Borman, R. I. (2021). Penerapan Convolutional Neural Network (CNN) pada Pengenalan Aksara Lampung Berbasis Optical Character Recognition (OCR). Jurnal Edukasi dan Penelitian Informatika (JEPIN), 7(1), 52. https://doi.org/10.26418/jp.v7i1.44133

Nafsin, M., Qashlim, A., & Khairat, U. (2022). Sistem Informasi Data Siswa Berbasis Ocr (Optical Character Recognition) Pada Smk Bina Harapan. Journal Peqguruang: Conference Series, 4(1), 412. https://doi.org/10.35329/jp.v4i1.2201

Nomira, S. R. (2024). Relevansi Gizi Dan Kesehatan. 1–16.

Pangestu, A. D. (2024). Perlindungan Konsumen Terhadap Pemberian Label Informasi Nilai Gizi Yang Tidak Sesuai.

Pratama, J., & Saian, P. O. N. (2020). Perancangan Aplikasi Android dengan Konsep Optical Character Recognition menggunakan BlinkID. 672016158.

Ratna, S. (2020). Pengolahan Citra Digital Dan Histogram Dengan Phyton Dan Text Editor Phycharm. Technologia: Jurnal Ilmiah, 11(3), 181. https://doi.org/10.31602/tji.v11i3.3294

Utomo, P. B., Luthfi, I. M., Fu’ad, M. N., & Mujiono, M. (2023). Penerapan Optical Character Recognition (OCR) Dengan Text-To-Speech (TTS) dalam Konversi Gambar ke Suara. Voteteknika (Vocational Teknik Elektronika dan Informatika), 11(4), 415. https://doi.org/10.24036/voteteknika.v11i4.125218

Vani, A. T., Triansyah, I., Dewi, N. P., Abdullah, D., & Annisa, M. (2023). Edukasi Dan Pelatihan Penilaian Status Gizi Pada Remaja Di Smp Yari Kota Padang. Nusantara Hasana Journal, 2(8), 290–300.

Downloads

Published

2025-06-18

How to Cite

Muhammad Suhairi, Elvi Rahmi, & Eva Kurniawaty. (2025). Penerapan Teknologi Optical Characater Recognition pada Aplikasi Pemindaian Nutrisi di Label Kemasan Makanan . Jurnal Ilmiah Teknik Informatika Dan Komunikasi, 5(1), 219–236. https://doi.org/10.55606/juitik.v5i1.1205

Similar Articles

<< < 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.