Perbandingan Kinerja Algoritma Decision Tree dan Random Forest dalam Memprediksi Kepuasan Penumpang Maskapai
DOI:
https://doi.org/10.55606/juisik.v5i3.1759Keywords:
Algorithm Performance, Decision Tree, Passenger Satisfaction, Random Forest, Rapid MinerAbstract
This study aims to conduct a comparative analysis of the performance of two classification algorithms, namely Decision Tree and Random Forest, in predicting the level of airline passenger satisfaction. The data used in this research were obtained from the Airline Passenger Satisfaction dataset available on Kaggle, which contains various variables related to passengers’ flight experiences. The research employed a quantitative experimental method using the CRISP-DM (Cross Industry Standard Process for Data Mining) approach, consisting of several stages including data understanding, data preparation, modeling, evaluation, and deployment. The modeling process was carried out using RapidMiner Studio, with the dataset divided into 70% for training and 30% for testing. The experimental results indicate that the Decision Tree algorithm achieved an accuracy rate of 91.77%, while the Random Forest algorithm achieved a higher accuracy of 93.37%. This difference demonstrates that Random Forest possesses better generalization capabilities and more stable performance in handling complex and varied data. Therefore, it can be concluded that the Random Forest algorithm performs more effectively in predicting airline passenger satisfaction levels. Moreover, this study highlights the importance of selecting an appropriate algorithm in data analysis processes to support data-driven decision-making within the aviation industry.
References
Ekrinifda, A., Ramadhan, S. A., Marvella, S., & Fansyuri, M. (2025). Analisis perbandingan algoritma Random Forest dan Decision Tree pada prediksi penyakit diabetes. Jurnal Riset Informatika dan Inovasi, 2(11), 2011–2016. https://jurnalmahasiswa.com/index.php/jriin/article/view/2289
Fadri, A. I., Zahfran, A., Irak, T., Firjatullah, N. H., & Herianto, J. E. (2025). Comparison of supervised learning algorithms for predicting airline passenger satisfaction. IJATIS: Indonesian Journal of Applied Technology and Innovation Science, 2(1), 42–52. https://doi.org/10.57152/ijatis.v2i1.1868
Hariyanto, M., Kholiq, M., Yani, A., & Narti. (2020). Inti nusa mandiri. Inti Nusa Mandiri, 14(2), 133–138.
Ismail Setiawan, F., Fatah Yasin, I., & Tri Desianti, Y. (2025). Komparasi kinerja algoritma Random Forest, Decision Tree, Naïve Bayes, dan KNN dalam prediksi tingkat depresi mahasiswa menggunakan Student Depression Dataset. Jurnal Ilmu Komputer dan Teknologi, 6(1), 47–58. https://doi.org/10.35960/ikomti.v6i1.1756
Lubis, A. I., Erdiansyah, U., & Siregar, R. (2022). Komparasi akurasi pada Naive Bayes dan Random Forest dalam klasifikasi penyakit liver. Journal of Computing Engineering, System and Science (CESS), 7(1), 81–89.
Maksum, A., & Swanjaya, D. (2021). Perbandingan antara metode Decision Tree dan Support Vector Machine pada model rekomendasi mobil bekas. Prosiding Seminar Nasional Inovasi Teknologi (SEMNASINOTEK). Retrieved from https://proceeding.unpkediri.ac.id/index.php/inotek/article/view/1098
Martias, L. D. (2021). Statistika deskriptif sebagai kumpulan informasi. Fihris: Jurnal Ilmu Perpustakaan dan Informasi, 16(1), 40–59. https://doi.org/10.14421/fhrs.2021.161.40-59
Maysa, A., Alkadri, S. P. A., & Istikoma, I. (2024). Klasifikasi tingkat kepuasan di maskapai penerbangan: Studi komparasi algoritma K-NN dan Adaboost. Jurnal Informatika Polinema, 10(3), 405–412. https://doi.org/10.33795/jip.v10i3.5166
Nanda, A. P., Pramono, D. E. H., & Hartati, S. (2020). Menentukan tingkat kepuasan mahasiswa terhadap pelayanan akademik menggunakan metode algoritma K-Means. Jurnal Sistem Informasi dan Telematika, 11(1), 23–28.
Nasution, M. R. A., & Hayaty, M. (2019). Perbandingan akurasi dan waktu proses algoritma K-NN dan SVM dalam analisis sentimen Twitter. Jurnal Informatika, 6(2), 226–235. https://doi.org/10.31311/ji.v6i2.5129
Prasandy, T., Nurkhasanah, K., Sari, M. P., & Fazry, T. R. (2020). Perbandingan hasil penggunaan metode Decision Tree dan Random Tree pada data training aplikasi pencarian tukang. Ultima InfoSys: Jurnal Ilmu Sistem Informasi, 10(2), 93–97. https://doi.org/10.31937/si.v10i2.1166
Rahmat, W. A., Ladjamuddin, S. M., & Awaludin, D. T. (2023). Perbandingan algoritma Decision Tree, Random Forest dan Naive Bayes pada prediksi penilaian kepuasan penumpang maskapai pesawat menggunakan dataset Kaggle. Jurnal Rekayasa Informasi, 12(2), 150–159. Retrieved from https://journal.istn.ac.id/index.php/rekayasainformasi/article/view/1726
Setiono, M. H. (2022). Komparasi algoritma Decision Tree, Random Forest, SVM dan K-NN dalam klasifikasi kepuasan penumpang maskapai penerbangan. INTI Nusa Mandiri, 17(1), 32–39. https://doi.org/10.33480/inti.v17i1.3420
Suprapto, D. S., & Oetama, R. (2023). Analysis of airline passenger satisfaction using Decision Tree and Naïve Bayes algorithms. Jurnal Informatika Ekonomi Bisnis, 5, 1493–1500. https://doi.org/10.37034/infeb.v5i4.728
Wang, X., & Dumlao, M. F. (2025). Analysis of passenger satisfaction evaluation metrics based on machine learning. In Proceedings of 2025 3rd International Conference on Communication Networks and Machine Learning (CNML 2025) (pp. 538–543). https://doi.org/10.1145/3728199.3728288
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal ilmiah Sistem Informasi dan Ilmu Komputer

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.







