Forecasting Data Penjualan Harian Dea Bakery dengan Metode Sarima
DOI:
https://doi.org/10.55606/juisik.v5i3.1611Keywords:
Dea Bakery, Forecasting, Sales, SARIMA, Time SeriesAbstract
Dea Bakery is a bakery business located in Payakumbuh that faces fluctuating product sales influenced by seasonal factors such as religious holidays, weekends, and consumer trends. These conditions require accurate analytical approaches to support business planning and strategic decision-making. This study applies the Seasonal Autoregressive Integrated Moving Average (SARIMA) method to forecast product sales at Dea Bakery Payakumbuh Branch in 2023. The dataset used consists of daily sales records from January to December 2023. The research stages include data collection, preprocessing, data splitting, stationarity testing, ACF and PACF analysis, model parameter selection, and model evaluation using Mean Squared Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). The results show that the best model is SARIMA(1,0,1)(0,0,1)[7], which successfully represents weekly seasonality and daily sales trends. Evaluation on the training data achieved MSE of 1147.91, RMSE of 33.88, and MAPE of 16.50%, while the testing data achieved MSE of 969.67, RMSE of 31.14, and MAPE of 15.42%. These values are categorized as good performance, indicating that although there is a slight decrease in accuracy on the testing data, the model is still able to capture the overall sales trends and provide reliable predictions. Therefore, the SARIMA method can be used as a data-driven solution to improve operational efficiency and strengthen the competitiveness of Dea Bakery in the market.
References
Andriani, L., R. Putri, and A. Hidayat. 2021. “Forecasting Penjualan Roti Dengan Metode SARIMA.” Jurnal Sains Dan Informatika 7(1):45–53.
Box, George E. P., Gwilym M. Jenkins, and Gregory C. Reinsel. 2015. Time Series Analysis: Forecasting and Control. 5th ed. New Jersey: Wiley.
Farosanti, A., and R. Mubarok. 2022. “Data Preprocessing Dalam Analisis Big Data.” Jurnal Sistem Informasi 8(2):101–10.
Hajjah, F., and A. Marlim. 2021. “Penerapan Metode Peramalan Untuk Manajemen Stok.” Jurnal Sains Dan Informatika 7(1):22–30.
Hajjah, N., and E. Marlim. 2021. “Evaluasi Akurasi Model Peramalan Penjualan Menggunakan MAPE Dan RMSE.” Jurnal Statistika Dan Komputasi 9(1):33–41.
Hidayat, Nurul, Nelson Jafridin, Liska Pasorong, Yulita Lidan, Gloria Tabita Temban, Shalsa Khayrtaul Azisah, Program Manajemen, Program Pgsd, and Universitas Borneo Tarakan. 2024. “Pengembangan Program Peningkatan Pendapatan UMKM Ibu Rumah Tangga Melalui Inovasi Dan Modifikasi Produk Donat Toping.”
Hudaningsih, N., M. Sari, and R. Lestari. 2020. “Penerapan Peramalan Untuk Perencanaan Produksi Pada UMKM.” Jurnal Ekonomi Dan Bisnis 15(1):44–55.
Hyndman, Rob J.; Athanasopoulos, George. 2021. Forecasting: Principles and Practice (3rd Ed.). OTexts.
Indonesia, Republik. 2008. Undang-Undang Nomor 20 Tahun 2008 Tentang Usaha Mikro, Kecil, Dan Menengah. Jakarta: Sekretariat Negara.
Irsyad, M. 2024. “Identifikasi Parameter SARIMA Menggunakan ACF Dan PACF Pada Data Penjualan.” Jurnal Matematika Dan Aplikasi 12(1):25–34.
Janah, R., and H. Tampubolon. 2024. “Peran UMKM Dalam Pertumbuhan Ekonomi Indonesia.” Jurnal Ekonomi Dan Bisnis 12(1):15–25.
Khasanah, N., and E. Sulistyowati. 2020. “Peramalan Penjualan Minuman Ringan Menggunakan Metode SARIMA.” Jurnal Teknologi Dan Sistem Informasi 6(2):112–20.
Kotler, Philip, and Kevin Lane Keller. 2016. Marketing Management. 15th ed. New Jersey: Pearson Education.
Makridakis, Spyros, Evangelos Spiliotis, and Vassilios Assimakopoulos. 2020. “The M4 Competition: 100,000 Time Series and 61 Forecasting Methods.” International Journal of Forecasting 36(1):54–74.
Matsumoto, T., and T. Komori. 2021. “Anomaly Detection in Time Series Data for Business Forecasting.” Journal of Applied Statistics 48(9):1663–78. doi: 10.1080/02664763.2020.1789772.
Muzdalifah, A. 2023. “Prediksi Penjualan Keripik Singkong Menggunakan Metode SARIMA.” Jurnal Sains Data Dan Analitika 4(2):88–97.
Permana, A. 2024. “Peran Peramalan Dalam Mengantisipasi Fluktuasi Permintaan Pasar.” Jurnal Ekonomi Dan Manajemen 19(1):66–74.
Prayoga, R., and A. Alijoyo. 2024. “Penerapan Metode SARIMA Pada Peramalan Penjualan Kantin Sehat.” Jurnal Sistem Informasi Dan Bisnis 12(3):155–63.
Putri, S., and D. Junaedi. 2022. “Analisis Akurasi Model Peramalan Menggunakan MSE, RMSE, Dan MAPE.” Jurnal Informatika Dan Komputasi 10(2):76–83.
Sabila, R., D. Nugroho, and Y. Pratama. 2022. “Implementasi Metode SARIMA Untuk Prediksi Penjualan Produk Ritel.” Jurnal Teknologi Informasi Dan Sains 5(3):134–42.
Sabri, M., and R. Afrijal. 2023. “Peramalan Penjualan Roti Menggunakan Metode SARIMA (2,1,2)(1,0,1)[7].” Jurnal Teknologi Informasi Dan Sains 8(1):47–55.
Shumway, R. H., and D. S. Stoffer. 2021. Time Series Analysis and Its Applications: With R Examples. 5th ed. Springer.
Suseno, H., and A. Wibowo. 2023. “Penerapan SARIMA Untuk Data Penjualan Musiman: Studi Kasus UMKM.” Jurnal Statistika Terapan 11(2):133–42.
Szostek, K., P. Nowak, and M. Kowalski. 2024. “Advances in Seasonal Time Series Forecasting Using Hybrid SARIMA Approaches.” Journal of Forecasting 43(2):211–28. doi: 10.1002/for.2890.
Wei, W. W. S. 2020. Time Series Analysis: Univariate and Multivariate Methods. 2nd ed. Hoboken, NJ: John Wiley & Sons.
Widjaja, B., and H. Santoso. 2024. “Digital Marketing Sebagai Strategi Peningkatan Penjualan UMKM Bakery.” Jurnal Ekonomi Kreatif 6(1):22–30.
Yuliana, E., and A. Wibowo. 2021. “Analisis Faktor Musiman Terhadap Fluktuasi Penjualan Produk Makanan Pada UMKM.” Jurnal Ekonomi Dan Bisnis 24(2):115–24. doi: 10.22225/jeb.24.2.2021.115-124.
Zhang, Y., Li, X., & Wang, J. 2021. “Performance Evaluation of SARIMA Model in Forecasting Seasonal Demand with Irregular Peaks.” International Journal of Forecasting 37(4):1452–65. doi: 10.1016/j.ijforecast.2020.12.003.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal ilmiah Sistem Informasi dan Ilmu Komputer

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.