Analisis Sentimen Komentar Netizen di Twitter terhadap Keputusan Mahkamah Konstitusi pada Hasil Pemilihan Presiden 2024 Menggunakan Algoritma Naïve Bayes

Authors

  • Via Laurenz Politeknik Negeri Bengkalis
  • Fajar Ratnawati Politeknik Negeri Bengkalis

DOI:

https://doi.org/10.55606/juisik.v5i2.1491

Keywords:

2024 Presidential Election, Constitutional Court, Naïve Bayes, Public Opinion, Sentiment Analysis

Abstract

This research is focused on assessing the public opinion of netizens on Twitter regarding the Constitutional Court's decision on the results of the 2024 Presidential Election by utilizing the Naïve Bayes classification algorithm. Twitter is the main social media platform that many people use to voice their opinions, including on political issues. Through the Naïve Bayes classification method, public opinion is divided into two main sentiments: positive and negative. This research began with the collection of comment data through the scraping process, then continued with the pre-processing stages of data which included case folding, tokenizing, normalization, stopword removal, and stemming. The processed data is then manually labeled to form training data. The Naïve Bayes model was trained using the training data, then tested using test data to evaluate the performance of the classification model. The results of the evaluation showed that the model had an accuracy rate of 90%, with precision and recall values in the positive class of 83% each. These findings show that the Naïve Bayes algorithm can effectively classify netizens' sentiments against the Constitutional Court's ruling. In addition, the classification results also show that netizens' opinions tend to be divided, with a slightly higher proportion of negative sentiments compared to positive sentiments. This study also enriches the methods used in digital sentiment analysis, especially in understanding public responses to political issues that develop on social media. The results of this study are expected to be a reference in data-based decision-making on public opinion, especially in the realm of public policy, political communication, and digital information management. Going forward, similar research could be further developed with different algorithms or with a wider scope of data to get a more comprehensive picture.

References

Aldean, F., Ramadhan, H., & Subhan, A. (2022). Analisis sentimen masyarakat terhadap vaksinasi COVID-19 di Twitter menggunakan metode Random Forest Classifier (Studi kasus: Vaksin Sinovac). Jurnal Teknik Informatika, 6(2), 85-92. https://doi.org/10.20895/inista.v4i2.575

Anam, M., Rafiq, M. A., & Siregar, A. (2021). Penerapan Naïve Bayes Classifier, K-Nearest Neighbor (KNN) dan Decision Tree untuk menganalisis sentimen pada interaksi netizen dan pemerintah. Jurnal Teknologi Informasi dan Ilmu Komputer, 8(3), 297-305.

Apriani, R., & Gustian, D. (2020). Analisis sentimen dengan Naïve Bayes terhadap komentar aplikasi Tokopedia. Jurnal Sistem Informasi dan Komputer, 9(2), 112-119.

Athira, L., Nabilah, S., & Hardiyanti, R. (2018). Analisis sentimen cyberbullying pada komentar Instagram dengan metode klasifikasi Support Vector Machine. Seminar Nasional Teknologi Informasi dan Komunikasi, 2(1), 55-61.

Atika, R., Rahmah, A., & Widodo, P. (2022). Term Frequency-Inverse Document Frequency Support Vector Machine untuk analisis sentimen opini masyarakat terhadap tekanan mental pada media sosial Twitter. Jurnal Ilmu Komputer, 10(1), 45-53.

Darman, R. (2020). Analisis sentimen respons Twitter terhadap persyaratan Badan Penyelenggara Jaminan Sosial (BPJS) di kantor pertahanan. Jurnal Teknologi dan Sistem Informasi, 7(2), 131-138.

Fath, R. A. (2020). Analisis sentimen komentar kebijakan full day school menggunakan algoritma Naïve Bayes Classifier. Jurnal Ilmu Komputer, 8(1), 40-48.

Firmansyah, D., & Yusuf, A. (2020). Perbandingan kinerja algoritma Naïve Bayes dan Logistic Regression untuk klasifikasi sentimen di Twitter. Jurnal Informatika dan Sains Data, 6(1), 55-63.

Halim, A. R., Prasetyo, A., & Nursamsi, R. (2023). Klasifikasi sentimen masyarakat terhadap Prabowo Subianto bakal calon presiden 2024 di Twitter menggunakan Naïve Bayes Classifier. Jurnal Teknik Komputer, 11(1), 55-63. https://doi.org/10.47065/josh.v5i1.4054

Hidayatullah, A., & Sari, D. P. (2021). Implementasi Naïve Bayes dalam analisis sentimen opini publik terhadap kebijakan pemerintah di Twitter. Jurnal Teknologi Informasi dan Komputer, 10(2), 66-74.

Kaka, M., Fahmi, M., & Lestari, N. (2023). Analisis sentimen dampak perkembangan teknologi informasi dan komunikasi terhadap kemajuan belajar siswa SMK Rada Pamba dengan metode Naïve Bayes. Jurnal Informatika dan Sistem Informasi, 7(2), 78-84.

Maulana, H., & Pratiwi, Y. (2022). Pemanfaatan media sosial untuk deteksi opini publik terkait isu nasional. Jurnal Komunikasi Digital, 4(1), 40-50.

Putri, N., & Prasetya, H. (2021). Text mining untuk analisis sentimen netizen terhadap figur publik menggunakan Naïve Bayes dan SVM. Jurnal Teknologi dan Sains Informasi, 5(3), 98-106.

Sembiring, R., & Yulianti, A. (2023). Analisis sentimen Twitter mengenai Pemilu 2024 menggunakan algoritma machine learning. Jurnal Sistem Informasi dan Teknologi, 9(1), 25-33.

Wildan, R. (2023). Sentimen negatif netizen dalam kolom komentar Detik.com terhadap pemberitaan kasus Ferdy Sambo. Jurnal Komunikasi Massa, 6(2), 101-109. https://doi.org/10.21831/ltr.v22i1.57870

Downloads

Published

2025-07-31

How to Cite

Via Laurenz, & Fajar Ratnawati. (2025). Analisis Sentimen Komentar Netizen di Twitter terhadap Keputusan Mahkamah Konstitusi pada Hasil Pemilihan Presiden 2024 Menggunakan Algoritma Naïve Bayes. Jurnal Ilmiah Sistem Informasi Dan Ilmu Komputer, 5(2), 636–643. https://doi.org/10.55606/juisik.v5i2.1491