Penerapan Metode Apriori untuk Mengidentifikasi Korelasi Nilai Siswa di Sekolah Menengah Pertama

Authors

  • Novita Anggraini STMIK Kaputama
  • Relita Buaton STMIK Kaputama
  • Imeldawaty Gultom STMIK Kaputama

DOI:

https://doi.org/10.55606/juisik.v5i3.1443

Keywords:

Apriori Method, Correlation, Student Scores

Abstract

Currently, education is developing very rapidly, starting from the school level even up to the university level. Quality human resources depend on education. Student learning achievement which is usually indicated by report card grades is one of the benchmarks of educational success. However, student grade data for strategic decision making in schools is often done manually and is not optimal. This study aims to identify correlations between student grades in Junior High Schools and apply the Apriori method in data analysis to determine the relationship between student grades and other variables such as subjects and achievement levels. This study involved data collection consisting of 508 students. The Apriori method successfully identified relevant correlations, such as students in Pancasila Education subjects received a B, ICT received a B, Mathematics received a B, English received a B, Social Studies received a B, Craft received a B, Indonesian received a B, Physical Education received a B, Science received a B, SBK received a B, Religious Education received a B, then the Achievement Level is Low with support 3.90% and confidence 95.20%. The use of RapidMiner software in data analysis provides recommendations for robust relationships or correlations. This research is expected to provide sound recommendations to support the achievement of national education goals by identifying the relationship between student grades and subject matter, as well as improving learning outcomes based on student achievement levels. 

References

Aktavera, B., Oktafia, H., Wijaya, L., Studi, P., Komputer, I., Petulai, U. P., Lebong, R., Studi, P., Informasi, S., Insan, U. B., Apriori, A., & Apriori, A. (2024). Analisis Association Rule Menggunakan Algoritma Apriori dan Algoritma FP Growth. Jurnal Teknologi Informasi Mura, 16(1), 54–61.

Andini, F., Buaton, R., & Gultom, I. (2024). Penggunaan Metode Rough Set Pada Pola Minat Dan Bakat Siswa Dalam Menentukan Tema P5. 4.

Andini, Y., Hardinata, J. T., & Purba, Y. P. (2022). Penerapan Data Mining Terhadap Tata Letak Buku Di Perpustakaan Sintong Bingei Pematangsiantar Menggunakan Metode Apriori. Jurnal TIMES, 11(1), 9–15. https://doi.org/10.51351/jtm.11.1.2022661

Buaton, R., Maulita, Y., & Kristiawan, A. (2018). Korelasi Faktor Penyebab Tindak Kekerasan dalam Rumah Tangga Menggunakan Data Mining Algoritma A Priori. Jurnal Media Infotama, 14(1). https://doi.org/10.37676/jmi.v14i1.468

Buaton, R., Zarlis, M., & Yasin, V. (2021). Konsep Data Mining Dalam Implementasi. Jakarta: Mitra Wacana Media, 1.

Elfira Iriani, I Gusti Prahmana, & Yani Maulita. (2024). Korelasi Antara Karakteristik TKI dengan Jenis Pekerjaan Menggunakan Metode Apriori. Bridge : Jurnal Publikasi Sistem Informasi Dan Telekomunikasi, 2(4), 85–100. https://doi.org/10.62951/bridge.v2i4.218

Khoiruzzidan, I. (2024). Analisis Asosiasi pada Nilai Mahasiswa Informatika UII menggunakan Data Mining dengan Algoritma Apriori. https://dspace.uii.ac.id/handle/123456789/48970%0Ahttps://dspace.uii.ac.id/bitstream/handle/123456789/48970/18523245.pdf?sequence=1

Komariatin, S. (2024). Analisis Penerapan Budaya Religius Dalam Membentuk Karakter Siswa Di Sdn Marmoyo Kecamatan Kabuh Kabupaten Jombang. Jurnal Agama, Sosial, Dan Budaya, 3(2), 461–474. https://publisherqu.com/index.php/Al-Furqan

Lubis, M. S., Lumbanbatu, K., & Lubis, I. (2022). Korelasi Antara Motivasi Belajar Dan Minat Baca Dengan Prestasi Siswa Menggunakan Metode Apriori: Studi Kasus SMP Negeri 11 Binjai. El-Mujtama: Jurnal Pengabdian Masyarakat, 2(3), 398–411. https://doi.org/10.47467/elmujtama.v2i3.1947

Nurhayati, I., & Suryanto, R. (2020). Perbandingan Algoritma Apriori dan FP-Growth dalam Menentukan Pola Asosiasi Penjualan Produk. Jurnal Teknologi dan Sistem Komputer, 8(3), 145–152. https://doi.org/10.14710/jtsiskom.8.3.2020.145-152

Pramudhita, C., Buaton, R., & Sitompul, M. P. U. (2024). Application of Apriori Algorithm in Determining Behavioral Patterns and Lifestyle of GERD Patients. International Journal of Informatics, Economics, Management and Science, 3(2), 146. https://doi.org/10.52362/ijiems.v3i2.1593

Saefuddin1, M. T. (2023). 1 . تفت نغد .لاله لوسر يهيساغم بدا تنيءاكرب غي يلقن ليلد وتاس خابمم .2 نيراه نفوديهك لماد لاله لوسر يهيساغم بدا 3 يسلاوميس نكنوكلام . لوتب نغد زيءوك نلاءوس 4 باوجنم. Teknik Pengumpulan Data Kuantitatif Dan Kualitatif Pada Metode Penelitian, 2(6), 784–808.

Saputra, R., & Hidayat, R. (2019). Analisis Market Basket Menggunakan Algoritma Apriori pada Data Penjualan Minimarket. Jurnal Informatika dan Rekayasa Perangkat Lunak, 5(1), 33–40. https://ejournal.upi.edu/index.php/jirl/article/view/21358

Setiawan, A., & Prasetyo, E. (2021). Penerapan Algoritma Apriori dalam Menentukan Pola Pembelian Konsumen pada Toko Retail. Jurnal Teknik Informatika, 14(2), 87–95. https://doi.org/10.30865/jti.v14i2.2543

Siahaan, A. E., & Fauzi, R. (2023). Implementasi Data Mining Dalam Prediksi Kepuasan Belajar Saat Pandemic Covid Menggunakan Algoritma C 4.5. Computer and Science Industrial Engineering (COMASIE), 9(8), 40. https://doi.org/10.33884/comasiejournal.v9i8.7949

Downloads

Published

2025-08-28

How to Cite

Novita Anggraini, Relita Buaton, & Imeldawaty Gultom. (2025). Penerapan Metode Apriori untuk Mengidentifikasi Korelasi Nilai Siswa di Sekolah Menengah Pertama. Jurnal Ilmiah Sistem Informasi Dan Ilmu Komputer, 5(3), 91–103. https://doi.org/10.55606/juisik.v5i3.1443

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.