Perbandingan Performa Algoritma Support Vector Machine dan K-Nearest Neighbors terhadap Analisis Sentimen Aplikasi Perpustakaan Digital
DOI:
https://doi.org/10.55606/juitik.v5i3.1522Keywords:
Digital Library, K-Nearest Neighbors, Sentiment Analysis, Support Vector Machine, TF-IDFAbstract
The increasing use of digital library applications in the era of information technology necessitates a systematic evaluation of user experience. Online user reviews contain valuable information that can be analyzed to measure service effectiveness. This study aims to identify user perceptions through sentiment analysis and compare the performance of the Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) classification algorithms. This applied research collects 6,000 reviews via web scraping from the Google Play Store, focusing on two applications: iPusnas and Gramedia Digital. The data processing begins with text preprocessing to clean the text data, followed by feature extraction using Term Frequency-Inverse Document Frequency (TF-IDF) to identify relevant features before classification with both algorithms. The performance of the algorithms is evaluated using a confusion matrix to measure accuracy based on the number of correct and incorrect predictions. The results show that the SVM algorithm achieves higher accuracy, with 77.78% for iPusnas and 79.34% for Gramedia Digital. In contrast, KNN only achieves 40.06% accuracy for iPusnas and 60.54% for Gramedia Digital. From these results, it can be concluded that SVM outperforms KNN in processing digital library application user reviews. This indicates that SVM is more effective in handling large and complex review data. Based on these findings, it is recommended that digital library application developers utilize SVM in sentiment analysis systems to enhance service quality and user experience. Future research may consider aspect-based approaches or a combination of algorithms to achieve more optimal results in sentiment analysis.
References
Aftab, F., Bazai, S. U., Marjan, S., Baloch, L., Aslam, S., Amphawan, A., & Neo, T. K. (2023). A comprehensive survey on sentiment analysis techniques. International Journal of Technology, 14(6), 1288-1298. https://doi.org/10.14716/ijtech.v14i6.6632
Ardianto, R., & Marhoon, H. M. (2020). Understanding user sentiment: Analysis of SATUSEHAT application reviews on Google Play Store. Journal of Advanced Health Informatics Research, 1(2), 83-94. https://doi.org/10.59247/jahir.v1i2.44
Busrayan, I., & Andrianingsih. (2025). Analisis sentimen pelanggan terhadap aplikasi Wondr by BNI menggunakan Naive Bayes, Support Vector Machine (SVM), dan K-Nearest Neighbor (KNN), 2(2), 263-274.
Chen, H., Zhai, Z., Feng, F., Li, R., & Wang, X. (2022). Enhanced multi-channel graph convolutional network for aspect sentiment triplet extraction. Proceedings of the Annual Meeting of the Association for Computational Linguistics, 1, 2974-2985. https://doi.org/10.18653/v1/2022.acl-long.212
Damayanti, D., & Nuzuli, A. K. (2023). Studi kasus implementasi teknologi chatbot sebagai asisten virtual dalam menjawab pertanyaan mahasiswa di lingkungan kampus. Reslaj: Religion Education Social Laa Roiba Journal, 6(3), 1178-1192. https://doi.org/10.47467/reslaj.v6i3.4858
Dea Safryda, P., Nina, S., & Apriade, V. (2023). Analisis sentimen dan pemodelan ulasan aplikasi AdaKami menggunakan algoritma SVM dan KNN. Journal Sensi, 09(02).
Garousi, V., & Cutting, D. (2021). What do users think of the UK's three COVID-19 contact-tracing apps? A comparative analysis. BMJ Health and Care Informatics, 28(1), 1-7. https://doi.org/10.1136/bmjhci-2021-100320
Malik, R. A. A., & Sibaroni, Y. (2022). Multi-aspect sentiment analysis of TikTok application usage using FastText feature expansion and CNN method. Journal of Computer System and Informatics (JoSYC), 3(4), 277-285. https://doi.org/10.47065/josyc.v3i4.2033
Muhammad Adin, P., Rochana Prih, H., & Rian Adam, R. (2024). Analisis sentimen berbasis aspek pada ulasan pengguna aplikasi Starbucks menggunakan algoritma Support Vector Machine. Journal of Internet and Software Engineering (JISE), 13(1), 659. https://doi.org/10.35889/jutisi.v13i1.1826
Rawat, D., Rawat, K., Sharma, A., & Shefali, S. (2022). A study of educational technology startups in India. Journal of Technology Management for Growing Economies, 14(1), 16-6. https://doi.org/10.15415/jtmge/2023.141001
Tanggraeni, A. I., & Sitokdana, M. N. N. (2022). Analisis sentimen aplikasi e-government pada Google Play menggunakan algoritma Naïve Bayes. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 9(2), 785-795. https://doi.org/10.35957/jatisi.v9i2.1835
Wankhade, M., Rao, A. C. S., & Kulkarni, C. (2022). A survey on sentiment analysis methods, applications, and challenges. In Artificial Intelligence Review (Vol. 55, Issue 7). Springer Netherlands. https://doi.org/10.1007/s10462-022-10144-1
Yu, J., Gong, C., & Xia, R. (2021). Cross-domain review generation for aspect-based sentiment analysis. Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, 4767-4777. https://doi.org/10.18653/v1/2021.findings-acl.421
Zhao, H., Yang, M., Bai, X., & Liu, H. (2024). A survey on multimodal aspect-based sentiment analysis. IEEE Access, 12(November 2023), 12039-12052. https://doi.org/10.1109/ACCESS.2024.3354844
Zhou, L. (2022). Research on quantitative model of brand recognition based on sentiment analysis of big data. Frontiers in Psychology, 13(May), 1-11. https://doi.org/10.3389/fpsyg.2022.915443
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Ilmiah Teknik Informatika dan Komunikasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.