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Abstract: Wavelet signal processing is broadly used for analysis of real time seismic signal. The numerous wavelet 

filters are developed by spectral synthesis using machine learning python to realize the signal characteristics. Our 

paper aims to solve and evaluating the frequencies-energy characteristic of earthquake. The wavelet method by 

Continuous Wavelet Transform (CWT) is able to clearly and simultaneously of amplitudes and frequency-energy from 

component between the seismogram which seismic sensor broadband recorded in the January 16, 2017 in Medan, 

North Sumatra. Finally, from machine learning python with morlet wavelet allows good time resolution for high 

frequencies, and good frequency resolution for low frequencies. 
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1. INTRODUCTION 

Tourism at Lake Toba in North Sumatra, Indonesia, has become a primary focus for 

regional economic development in recent years. Known as the largest volcanic lake in the 

world, Lake Toba not only offers stunning natural beauty but is also rich in cultural and 

historical significance. However, despite its substantial potential as a tourist destination, 

efforts to increase visitor numbers and attract interest from both local and international 

communities remain significant challenges.The increase in tourist visits to Lake Toba has 

become a central concern for the government and tourism managers. In recent years, efforts to 

promote Lake Toba as a premier tourist destination have seen significant enhancement. 

However, the public's response and sentiment toward these developments vary, encompassing 

various social, economic, cultural, and environmental aspects. One important aspect of 

evaluating the impact of tourism is understanding how the community responds to the 

promotion of Lake Toba through social media. Social media has become a primary platform 

for sharing information, opinions, and experiences related to tourism. Sentiment analysis on 

social media can provide valuable insights into how promotional campaigns are understood 

and accepted by the public, as well as how this influences tourists' interest and decisions to 

visit Lake Toba. In this context, it is essential to comprehend how public sentiment on social 

media affects the enthusiasm and number of visitors to Lake Toba. This evaluation should not 

only encompass positive responses to tourism promotion but also address concerns regarding 

environmental preservation, sustainable tourism, and the economic benefits for local 
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communities. Such understanding is necessary to develop more effective strategies for 

promoting Lake Toba as a leading and sustainable tourist destination with high global 

competitiveness. 

Considering these various aspects, an in-depth analysis of public sentiment regarding 

tourism at Lake Toba on social media will provide a strong foundation for developing tourism 

policies that are more inclusive, sustainable, and oriented toward the interests of both local 

and global communities. 

 

2. BACKGROUND REASONS AND PURPOSES FOR UNDERTAKING THE PROJECT 

One of the most notable geological features in the world is the Toba Caldera, which is 

situated in North Sumatra, Indonesia. The caldera, which was created by a volcanic explosion 

around 74,000 years ago, has a rich geological past in addition to possible volcanic hazards. 

Thanks to significant scientific study and technical advancements, our understanding of 

seismic and volcanic dynamics has expanded significantly in recent decades. The importance 

of protecting geopark areas like Kaldera Toba is becoming more and more important, along 

with the need to protect natural areas while ensuring visitor safety. One of the most important 

lessons learned from this experience is to recognize and understand the role that abiotic 

activities play in affecting the cleanliness and health of the affected area. With the 

development of data analytics and artificial intelligence (AI), new avenues for addressing 

these issues are opening up. Deeper understanding of the seismic patterns and hazards in the 

area can be obtained by applying AI to earthquake clustering analysis. We can predict 

possible hazards, find patterns in earthquake activity, and create more efficient mitigation 

plans by using this data-driven method. 
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Earthquakes, as one of the most devastating natural phenomena, pose significant 

threats to human life, infrastructure, and economies. The region of North Sumatra as shown in 

fig. 1, situated along the Pacific Ring of Fire, is particularly prone to frequent and severe 

seismic activities due to its tectonic setting[1]. Understanding the patterns and behaviors of 

earthquakes in this region is critical for disaster preparedness, risk mitigation, and the 

formulation of effective response strategies. Clustering algorithms, which group similar data 

points based on specified characteristics, have proven to be powerful tools in seismology for 

analyzing seismic events. These techniques help identify patterns, trends, and anomalies 

within earthquake data, enabling researchers to classify events based on parameters such as 

location, magnitude, and depth. By doing so, clustering algorithms can reveal hidden structures 

within the data that might be indicative of underlying geological processes or potential future 

seismic hazards. 

 

Fig. 1. Distribution of Earthquake in northern Sumatra 2019-2022 

In addition to enhancing the geopark's sustainability and safety, this strategy intends to 

provide visitors with more precise and current information on seismic and geological activity. 

Toba Caldera has the potential to become an exemplar of intelligent and sustainable geopark 

management through the integration of AI technology, seismic data, and regional 
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development plans. The purpose of this study is to investigate how the creation of the Toba 

Caldera Geopark may be aided by the use of AI techniques for earthquake clustering. It is 

envisaged that by applying machine learning techniques and geospatial data analysis, more 

effective management plans may be developed to safeguard and make the most use of this 

priceless geological heritage. 

This study focuses on the application of three prominent clustering algorithms—K-

means, DBSCAN (Density-Based Spatial Clustering of Applications with Noise), and Fuzzy 

C-Means— to earthquake data from North Sumatra. Each of these algorithms offers unique 

advantages: K- means is renowned for its simplicity and efficiency in partitioning data into 

clusters; DBSCAN excels in identifying clusters of varying shapes and densities while 

effectively handling noise; and Fuzzy C-Means allows for overlapping clusters, providing a 

more nuanced understanding of data points that may belong to multiple clusters. 

Hence, the objective of this study were: 

- to compare the effectiveness of these fundamentally different clustering algorithms in 

classifying seismic events in North Sumatra 

- By evaluating K-means, DBSCAN, and Fuzzy C-Means, this study aims to determine 

which method is best suited for clustering earthquakes in this region. The analysis will 

reveal how much the results differ across the algorithms or if they yield similar outcomes. 

- This insight could enhance earthquake prediction models and improve disaster readiness in 

regions susceptible to earthquakes. 

 

3. RELATED RESEARCH 

Numerous studies have demonstrated the application and efficacy of various clustering 

techniques in analyzing seismic data. Partition-based clustering methods such as K-means and 

Fuzzy C- Means have been used to classify seismic events based on location, magnitude, and 

depth, finding K-means to be particularly effective [2]. The Spatiotemporal Extended Fuzzy 

C-Means (SEFCM) algorithm has been applied to earthquake data from Southern Italy, 

effectively detecting and predicting seismic hotspots compared to ST-DBSCAN [3]. In 

Indonesia, K-Affinity Propagation and K-means clustering have been employed for 

classifying earthquake data, validated with several clustering indices [4]. A two-stage 
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clustering model using K-means and a variable DBSCAN algorithm was proposed to analyze 

seismic activities in the Himalaya and Sumatra– Andaman regions, demonstrating the 

method's capability in declustering earthquake catalogs [5]. 

Additionally, a spatial cluster analysis of land seismicity in Northern Sumatra using the 

K-Medoids algorithm analyzed seismic data from January 2019 to 2023, identifying optimal 

cluster configurations that emphasized distinctions in depth and geographical location, 

significantly contributing to seismic hazard assessment in North Sumatra [6]. Similarly, the 

K-Medoids clustering method was used to analyze seismic activity in West Java, identifying 

significant seismic clusters with implications for earthquake monitoring and hazard 

assessment in the region [7]. By building on these foundational studies, the present research 

aims to provide a comprehensive comparison of K-means, DBSCAN, and Fuzzy C-Means in 

the context of earthquake clustering in North Sumatra, thereby contributing to the enhanced 

understanding and prediction of seismic activities in the region. 

 

4. DATA AND MODEL 

The earthquake data for Northern Sumatra, recorded between January 2019 and 

December 2022, was provided by the Indonesian Agency for Meteorology, Climatology, and 

Geophysics (BMKG). During this period, a total of 1069 seismic events were documented. 

The depths of these earthquakes ranged from the shallowest at 1 kilometer to the deepest at 

209 kilometers. The recorded magnitudes varied, with the highest being 5.4 and the lowest at 

0.9. The distribution of earthquake data in North Sumatra is visualized through histograms 

(fig. 2), providing insights into the spread of various features: longitude, latitude, magnitude, 

and depth. The longitude distribution shows that most earthquake occurrences are concentrated 

between 97.5 and 99.0 degrees, with a slight skewness indicating specific longitudinal regions 

where seismic events are frequent. The latitude distribution reveals that earthquakes 

predominantly occur between 1.5 and 2.5 degrees, with multiple peaks suggesting distinct 

regions of seismic activity within this latitude range. 

The magnitude distribution follows a near-normal curve, with most earthquakes 

having magnitudes between 2.5 and 3.5. This indicates that moderate earthquakes are more 

common in this region, while both very weak and very strong earthquakes are less frequent. 

The depth distribution is highly skewed towards shallow depths (0-50 km), indicating that 
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most earthquakes occur at these depths. There is a sharp decline in the frequency of deeper 

earthquakes, with very few events occurring at depths greater than 100 km. 
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Fig. 2. Earthquake distributions plot 

 

K-means clustering is a widely used partition-based algorithm that aims to divide a 

dataset into K clusters, where each data point belongs to the cluster with the nearest mean. 

The algorithm iterates between two steps: assigning data points to the nearest cluster mean 

and updating the cluster means based on these assignments. To determine the optimal number 

of clusters (K), the elbow method is used, examining the within-cluster sum of squares for K 

values ranging from 2 to 

10. Additionally, a grid search is performed for different random states to enhance the 

robustness of the clustering solution. Recent studies have enhanced K-means in various ways. 

One approach proposes an unsupervised learning schema for K-means that automatically 

determines the optimal number of clusters, addressing a key limitation of traditional K-means 

[8]. Another improvement involves developing a new similarity calculation method based on 

weighted Euclidean distance, enhancing both efficiency and correctness [9]. Additionally, a 

robust deep K-means model has been proposed that leverages deep learning to improve 

clustering performance by learning hierarchical representations, allowing for more effective 
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clustering of complex datasets [10]. 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a 

density-based clustering algorithm capable of identifying clusters of arbitrary shape and 

handling noise. It defines clusters as areas of high density separated by areas of low density. 

DBSCAN identifies core points, which have a sufficient number of neighboring points within 

a specified radius (ϵ), and expands clusters from these core points. The algorithm is governed 

by two parameters: ϵ and the minimum number of points required to form a dense region 

(MinPts). Key advancements in DBSCAN include the introduction of KNN-BLOCK 

DBSCAN, an approximate algorithm that uses k-nearest neighbors to enhance clustering speed 

for large datasets [11]. Additionally, fuzzy extensions of DBSCAN have been developed to 

better identify clusters with variable density distributions and overlapping borders, increasing 

flexibility and accuracy [12]. To determine the initial value of ϵ, K-nearest neighbors (KNN) 

with K ranging from 4 to 21 are used to compute the distances to the nearest neighbors, which 

helps in identifying a suitable radius for clustering. The optimal values for ϵ and min_samples 

are found through grid search. A range of ϵ values is tested to determine the best distance 

threshold that defines neighborhoods, while min_samples is varied to find the number of 

points required to form dense regions. Evaluation is done by ensuring valid clustering results 

(more than one cluster and not all points in one cluster) and optimizing the silhouette score. 

Fuzzy C-Means (FCM) is a clustering algorithm that allows each data point to belong to 

multiple clusters with varying degrees of membership. This algorithm minimizes an objective 

function that represents the weighted distance between data points and cluster centers. Recent 

advancements include revisions to handle unequal cluster sizes, noise, and outliers, improving 

robustness and accuracy [13]. Enhancements to FCM have been made by optimizing the 

initialization of cluster centers and the merging process, with applications in mental health 

intelligent evaluation systems [14]. The optimal number of clusters (c) and the fuzziness 

parameter (m) are determined through grid search. Various values for c are tested to find the 

best number of clusters, while different m values are evaluated to control the degree of 

membership in clusters. The best parameters are those that provide the highest silhouette score, 

indicating the most effective clustering. 

In this HPC-integrated clustering approach, we aim to optimize the execution of K-
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means, DBSCAN, and Fuzzy C-Means algorithms by running them concurrently across a 

high- performance computing (HPC) environment. The process begins with the initialization of 

the HPC environment, where necessary modules and libraries are loaded, and parallel or 

distributed computation frameworks like Dask or MPI are set up. This environment allows for 

the efficient distribution of tasks across multiple cores, nodes, or GPUs, ensuring that 

computational resources are fully utilized from the outset. 

The core of the process involves parallel grid searches for each clustering algorithm. 

These searches are launched simultaneously, with each algorithm's parameter combinations 

distributed across the available HPC resources. For K-means, DBSCAN, and Fuzzy C-Means, 

the algorithm- specific processes loop through different parameter combinations, fitting 

models, calculating Silhouette scores, and returning the results. This parallel execution 

significantly reduces the time required to identify the best parameters for each algorithm, as 

the tasks are handled concurrently rather than sequentially. Once the grid searches are 

complete, the results are aggregated, and the best-performing models are identified. 

Following the parallel execution, the best models from each clustering algorithm are 

applied to the dataset to generate clusters. A post-processing step ensures that noise points are 

filtered out (specifically for DBSCAN), and cluster labels are adjusted as needed. The final 

results, including clustered data and any necessary visualizations, are then outputted. This 

approach not only accelerates the clustering process but also leverages the full power of HPC 

to handle large datasets and complex computations, making it ideal for tasks like earthquake 

clustering analysis in regions like North Sumatra. 

The K-Medoids algorithm is an extension of K-means, and falls within the domain of 

partitional clustering. Its main objective is to minimise the distances between the data points 

within a cluster and a particular data point, which is referred to as the medoid. The medoid, in 

this context, represents the central and most representative unit within the cluster. In 

particular, K-Medoids is robust to noise and outliers in the data set. This makes it a reliable 

clustering method. Unlike K- Means, which uses cluster centroids, K-Medoids uses actual data 

points as cluster representatives, making it versatile for various data grouping tasks [3][4]. 
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Fig. 3. Earthquake distributions plot 
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We assess clustering models using three pivotal metrics: the Silhouette Score, 

Calinski-Harabasz Index (CH), and Davies-Bouldin Index (DB). The Silhouette Score gauges 

the similarity of each data point to its own cluster versus others, with higher scores indicating 

clearer clusters. Its utility in determining optimal cluster numbers has been validated, and its 

applicability has been extended to complex cluster shapes[15], [16]. The Calinski-Harabasz 

Index measures clustering effectiveness by comparing between-cluster to within-cluster 

dispersion. It's computed as, 

𝐶𝐻 = 
𝑆𝑆𝐵 

𝑥 
𝑁−𝑘 (1) 

𝑆𝑆𝑊 𝑘−1 

Where is the 𝑆𝑆𝐵 between-cluster dispersion, 𝑆𝑆𝑊 is the within-cluster dispersion, 𝑁 

is the total number of data points, and 𝑘 is the number of clusters. Combine this index with the 

Silhouette Score results in more robust cluster evaluation practical scenarios [17], [18]. 

The Davies-Bouldin Index evaluates cluster similarity, aiming for lower values 

indicating better clustering quality. It's expressed as 

𝐷𝐵𝐼 = 
1 
∑𝑘 𝑚𝑎𝑥 (

𝑆𝑖+𝑆𝑗
) (2) 

  =1 𝑗≠𝑖 
 

𝑑𝑖𝑗 
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Where 𝑆𝑖 and 𝑆𝑗 represent the average distances of points within clusters 𝑖 and 𝑗, 

respectively, and 𝑑𝑖𝑗 is the distance between the centroids of clusters 𝑖 and 𝑗. This index is 

used to optimize clustering quality by minimizing the score. It has been applied to various 

scenarios, including optimizing school facility clustering and developing fuzzy variants for 

overlapping clusters [19], [20]. These metrics collectively provide a robust framework for 

evaluating clustering accuracy and reliability. By leveraging these sophisticated measures, we 

gain deeper insights into seismic activity patterns in North Sumatra, ensuring our analysis is 

rigorous and impactful. 

 

5. INNOVATION AND PRACTICAL APPLICATION 

This study investigates the efficacy of three clustering algorithms—K-means, 

DBSCAN, and Fuzzy C-Means—in classifying seismic events in North Sumatra. Earthquake 

data spanning from January 2019 to December 2022, provided by the Indonesian Agency for 

Meteorology, Climatology, and Geophysics (BMKG), was analyzed to evaluate how well 

each algorithm identifies and organizes clusters based on earthquake characteristics such as 

longitude, latitude, magnitude, and depth. K-means excelled in producing well-separated, 

spherical clusters; DBSCAN effectively detected clusters of varying densities and identified 

noise points; Fuzzy C- Means offered insights into overlapping clusters and gradual 

transitions. Despite some differences in the clustering results, all methods provided 

similar outcomes, with DBSCAN uniquely highlighting noise points. These insights 

contribute to a better understanding of seismic activity in North Sumatra and could improve 

earthquake prediction models and disaster preparedness strategies. 

 

6. PROPOSED DEVELOPMENT (TIME LINE) 

1. Year One: Data collection, literature study, research proposal, Prototype for cluster of 

earthquakes. (Spatial Cluster Analysis of Land Seismicity in Geopark Kaldera Toba using 

The K-Medoids Algorithm) 

2. Year two: Completing Automation of Earthquake Clustering, Publication, literature study. 

(Clustering Analysis of earthquake based on K-means, DBSCAN, and Fuzzy C-Means in 

Geopark Kaldera Toba) 
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